
IEIE Transactions on Smart Processing and Computing, vol. 4, no. 1, February 2015
http://dx.doi.org/10.5573/IEIESPC.2015.4.1.010 10

IEIE Transactions on Smart Processing and Computing

Accelerating Self-Similarity-Based Image Super-
Resolution Using OpenCL

Jae-Hee Jun1, Ji-Hoon Choi1, Dae-Yeol Lee2, Seyoon Jeong2, Suk-Hee Cho2, Hui-Yong Kim2, and Jong-Ok Kim1

1 School of Electrical Engineering, Korea University / Seoul, South Korea {indra, risty, jokim}@korea.ac.kr
2 Electronics and Telecommunications Research Institute / Dae-jeon, South Korea {daelee711, jsy, shee, hykim5}@etri.re.kr

* Corresponding Author: Jong-Ok Kim

Received April 5, 2014; Revised June 13, 2014; Accepted November 19, 2014; Published February 28, 2015

* Regular Paper

Abstract: This paper proposes the parallel implementation of a self-similarity based image SR
(super-resolution) algorithm using OpenCL. The SR algorithm requires tremendous computations
to search for a similar patch. This becomes a bottleneck for the real-time conversion from a FHD
image to UHD. Therefore, it is imperative to accelerate the processing speed of SR algorithms. For
parallelization, the SR process is divided into several kernels, and memory optimization is
performed. In addition, two GPUs are used for further acceleration. The experimental results shows
that a GPGPU implementation can speed up over 140 times compared to a single-core CPU.
Furthermore, it was confirmed experimentally that utilizing two GPUs can speed up the execution
time proportionally, up to 277 times.

Keywords: Super-resolution, OpenCL, Parallelization, Multiple GPUs

1. Introduction

As the complexity of image processing algorithms
increases, their running time on the CPU has been
multiplied accordingly. This has led to an increase in the
interest in GPGPUs (general-purpose computing on
graphics processing units). GPGPU is a technique to utilize
a GPU device for general computational applications,
which is typically handled by a CPU.

Although a GPU has a much lower clock frequency
than a CPU, it has a very large number of cores, and can
accelerate complex computations significantly by
parallelization. Researchers have recently examined the
acceleration of image processing algorithms using GPGPU
techniques [8, 9, 11, 12]. The GPGPU technology is
categorized into two different techniques. One is CUDA,
which was made public in 2007 by Nvidia, and the other is
OpenCL, which was released by the Khronos group in
2008 [7]. Some studies have compared CUDA with
OpenCL, such as [10]. OpenCL is an open, general-
purpose parallel framework that is renowned for its good
portability.

This paper proposes the parallel implementation of the
self-similarity based image SR (super resolution)

algorithm using OpenCL. The SR algorithm, which was
proposed previously exploits the inherent self-similarity of
an image [1, 2], but it requires tremendous computations to
search for a similar patch. In addition, the SR technique is
applied primarily to the resolution conversion from FHD
(Full HD) to UHD (Ultra HD) which has just begun to be
commercialized popularly. The amount of the UHD image
data is 4 times that of FHD. Therefore, common software
implementation makes it difficult to work in a real-time
manner. Accordingly, accelerating the processing speed of
SR algorithms is indispensable.

For parallelization, the SR process is divided into
several kernels, and memory optimization is performed. In
addition, two GPUs are utilized for further acceleration.
The experimental results show that GPGPU
implementation can speed up the SR process significantly
compared to a single-core CPU.

The remainder of this paper is organized as follows.
Section 2 introduces the super resolution algorithm that
was implemented with OpenCL. Section 3 briefly explains
the OpenCL implementation in detail, particularly focusing
on memory optimization and support to the multiple GPU
devices. Section 4 presents the experimental results.
Section 5 concludes the paper.

IEIE Transactions on Smart Processing and Computing, vol. 4, no. 1, February 2015

11

2. Super-Resolution Algorithm

The goal of SR is to reconstruct a HR (high resolution)
image from one or more observed LR (low resolution)
images. Recently, a number of SR methods have been
proposed to exploit the property of self-similarity in an
image.

In natural images, small patches tend to recur
redundantly across the scale as well as in-scale. This
observation is referred to as self-similarity, and has been
exploited popularly for image processing, such as de-
noising, edge detection and retargeting [3]. In addition, it
has been applied to learning-based image SR in recent
years [6].

SR methods based on self-similarity can be classified
into two categories, depending on the domain to which the
self-similarity assumption is applied; spatial domain and
LF (low frequency)-HF (high frequency) domain.

Self-similarity with the LF-HF domain is almost equal
to the learning based method, such as [4]. Unlike the
traditional example-based method, however, self-similarity
based SR on the LF-HF domain does not require any prior
databases. Therefore, this method can reduce the
computational complexity and memory consumption,
compared to the conventional learning based approach.

The self-similarity-based SR method consists of three
parts overall, as follows: the generation of image pyramids
for both LF and HF components, HF reconstruction-based
on self-similarity, and back projection after combining the
LF and HF components. First of all, an input LR image is
decomposed into LF and HF components, which are given
by

 LFLR = H(ILR) (1)

 HFLR = ILR - LFLR (2)

where H is a blurring operator, LFLR is the blurred image
of an input image. After decomposition, an HR image is
initially obtained by simply interpolating the input image.
This HR image can be considered the LF component of the
target HR image, which is denoted by LFHR. Scaling is
increased gradually to a target scale by a factor of 1.25. An
incremental coarse-grained method using a small scale
factor was reported to produce a more elaborate result [5].

For the reconstruction of HFHR, for every patch pi in
the image LFHR, the most similar patch pj is searched on
the LFLR domain. The corresponding HFLR patch is then
copied to query the patch. By merging the LFHR and HFHR
image, an HR image, IHR, can be reproduced as follows.

 HFHR (pi) = HFLR (pj) (3)
 IHR = LFHR + HFHR (4)

In this way, hierarchical HF reconstructions in the

image pyramid are repeated until the target HR is achieved.
Fig. 1 presents the overall processes of the SR algorithm.

3. Implementation Using OpenCL

This section present a parallel implementation of the
SR algorithm. First, the SR process is divided into a couple
of kernels, and the problem of the race condition, which
actually occurs in searching similar patches, is then
addressed. Next, memory optimization is performed based
on the memory model. Finally, we deal with how to handle
multiple GPU devices for further acceleration.

A kernel is a unit of code that represents a single

Fig. 1. Tasks of the self-similarity based SR algorithm.

Jun et al.: Accelerating Self-Similarity-Based Image Super-Resolution Using OpenCL

12

executing instance in a GPU. This single kernel instance
corresponds to a work item in OpenCL. When the work-
item and work-group are designed, both GPU specification
and image resolution should be considered simultaneously.
32x32 work-items are designated as a work-group. The
kernels for the SR algorithm are designed, as listed in
Table 1 according to tasks and synchronization points. For
further optimization of the OpenCL implementation, the
individual kernel running time is measured using
performance profiler, as listed in Table 1.

The kernel used to find the best matching patch is the
most time-consuming execution in the SR process. Hence,
special optimization of this kernel is essential for better
speed acceleration. This will be discussed in Section 3.2.

3.1 Race Condition
When the ‘Find similar patch’ kernel is running, two or

more work-items may reference the address value of a
single pixel at the same time. At this time, the race
condition occurs, which indicates the situation where
multiple work-items simultaneously accesses a certain
pixel to be declared in the global memory. To overcome
this conflict, a serialization method is adopted by the atom
command provided by OpenCL. Note that the use of the
atomic command ensures the correctness of local memory
by serialization.

Fig. 2 illustrates the occurrence of the race condition
and its solution.

3.2 Memory Optimization
Next, the memory optimization step is described.

OpenCL defines a hierarchical memory model, as shown
in Fig. 3. Local memory is manufactured by on chip, and it
is much faster than global memory. In addition, OpenCL
provides image memory that is specialized for accessing
image data. Image memory requires fewer GPU cycles
when data is read, so its access speed is much faster than
global memory. In this paper, speed acceleration is
optimized based on two memory model, which are image
buffer and local memory.

At the ‘Find similar patch’ kernel, similar patches are
searched in the surrounding local area of a target patch,
and all pixel data in the search area are loaded into the
local memory at one time. This can accelerate the memory
access speed better than global memory.

The local memory is divided into two memory banks.
To achieve high memory bandwidth (or high speed), all
work-items should be split evenly into each bank to reduce
the number of work-items per bank as much as possible. If
many work-items are assigned to a certain bank unevenly,
it takes more time due to serialization. This phenomenon is
the so called bank conflict, and it should be avoided when
local memory is used.

Table 1. Kernel design and computational time.

Procedure Kernel name Time(㎲)
LF/HF subtract Conv & Sub 6,237
Interpolation imgScaler 3,611

Find similar patch SSSR & Setzero 353,347
Patch mapping Add & Div 2,897
LF/HF merge Add 1,179

Back Projection Conv & Add & Sub 4,834

Fig. 2. Race condition and its solution.

Fig. 3. OpenCL memory model.

IEIE Transactions on Smart Processing and Computing, vol. 4, no. 1, February 2015

13

3.3 Support to Multiple GPUs
To utilize multiple GPU devices, a command queue

should be prepared for each GPU individually. On the
other hand, context can be shared among multiple
command queues or each queue can have its own context.
The former is a single context-based implementation. This
is a typical way to work with multiple devices. When
multiple devices use the same context, most of the
OpenCL objects are shared (e.g., kernel, program, and
memory objects). As mentioned above, one command
queue should be generated per GPU; hence, multiple
command queues are needed within the same context. This
approach is suitable for the algorithm that uses less
memory.

Another implementation approach is to define the
different contexts per device separately. This is commonly
used in computing on a heterogeneous device system (e.g.,
CPU and GPU). Data is handled independently among
multiple contexts, and system crashes can be avoided.

Fig. 4 illustrates the actual implementation of the
above-mentioned two approaches in the case of two GPUs.
Suppose that video frames are super-resolved on two
GPUs. As shown in Fig. 4(a), the image data is split into
two devices at a frame level. In other words, the odd
frames are processed into one GPU, and the even frames
are processed into the other one. When a single context is
adopted, a video frame is split equally into two segments,
and each segment is processed independently of each GPU,
as shown in Fig. 4(b).

4. Experimental Results

The experiments are performed on an Nvidia GeForce
GTX-780 device. The host machine is an Intel® Core™
i5-4590 CPU @ 3.30Ghz, 64 bits compatible. The
OpenCL programs were developed using Visual Studio
2012 and OpenCL version 1.1. The test application was to
super-resolve from a 1920 x 1080 FHD image to a
3840x2160 UHD using the self-similarity based SR
method in Section 2. The performance was measured by
the total execution time of all kernel functions in a GPU.
The execution time was measured by Nsight, a profiling
tool provided by Nvidia.

The parallel implementation in GPU speeds up the
running time, as confirmed in Table 2. In particular, if the
local memory based optimization is performed, the
algorithm running speed can be accelerated further by
approximately 2 times compared to the non-memory-
optimization. When each GPU uses its own context
separately, the execution speed can be made approximately
277 times faster than that of a single core CPU.

In a single context approach, an image is partitioned
equally into two segments, and half of the image is
processed into each GPU. When there are super-resolving
pixels near the border line between two image segments,
the pixel data of the other image segment is needed to find
a similar patch. Therefore, for a single context approach,
more than half an image is actually transferred to
individual GPUs. This leads to more transfer time between

the CPU and GPU.

5. Conclusion

This paper proposed a parallel implementation of a
complex image SR algorithm using OpenCL for speed
acceleration. Global memory synchronization was solved

(a) Multiple context

(b) Single context

Fig. 4. Two ways to utilize multiple devices in OpenCL.

Table 2. Running time comparisons.

of device Implementation method Time(s)
CPU (1 core) 25.209

GPU 0.388
GPU (image buffer) 0.273

1

GPU (local memory) 0.169
2 GPU (2 context) 0.091 2
2 GPU (1 context) 0.098

Jun et al.: Accelerating Self-Similarity-Based Image Super-Resolution Using OpenCL

14

using the race condition. In the SR algorithm, finding a
similar patch was very time-consuming; its speed could be
accelerated using the local memory. In addition, two GPUs
were utilized for further acceleration. The experimental
results showed that GPGPU implementation can speed up
the process by more than 140 times compared to that using
a single-core CPU. Furthermore, it was confirmed
experimentally that the use of two GPUs can accelerate the
execution time proportionally, by up to 277 times.

Acknowledgement

This work was supported by the ICT R&D program of
MSIP/IITP. [13-912-02-002, Development of Cloud
Computing Based Realistic Media Production technology]

References

[1] S.J. Park, O.Y. Lee, and J.O. Kim, “Self-similarity

based image super-resolution on frequency domain,”
Proc. of APSIPA ASC 2013, pp. 1-4, Nov. 2013.
Article (CrossRef Link)

[2] J.H. Choi, S.J. Park, D.Y. Lee, S.C. Lim, J.S. Choi,
and J.O. Kim, “Adaptive self-similarity based image
super-resolution using non local means,” Proc. Of
APSIPA ASC 2014, Dec. 2014. Article (CrossRef
Link)

[3] A. Buades, B. Coll and J.M Morel, “A non-local
algorithm for image denoising”, IEEE Int. Conf. on
Computer Vision and Pattern Recognition, vol. 2, pp.
60 – 65, June. 2005. Article (CrossRef Link)

[4] W.T. Freedman, T.R Jones, and E.C. Pasztor
“Example-based super-resolution,” IEEE Computer
Graphics and Applications, vol. 22, pp. 56-65, Mar.
2002. Article (CrossRef Link)

[5] D. Glasner, S. Bagon, and M.Irani, “Super-resolution
from a single image,” 12th IEEE Int. Conf. on
Computer Vision, pp. 349 – 356, Sep. 2009. Article
(CrossRef Link)

[6] G. Freeman, and R. Fattal, “Image and video
upscaling from local self-examples,” ACM Trans. on
Graphics, vol. 30, Article No. 12, Apr. 2011. Article
(CrossRef Link)

[7] Khronos OpenCL Working Group. The OpenCL
Specification Version 1.2. Khronos Group, 2012.
http://www.khronos.org/opencl

[8] J. Zhang, J. F. Nezan, and J.-G. Cousin,
“Implementation of motion estimation based on
heterogeneous parallel computing system with
OpenCL,” in Proc. IEEE Int. Conf. High
Performance Computing and Commun., 2012, pp.
41–45. Article (CrossRef Link)

[9] N.-M. Cheung, X. Fan, O. C. Au, and M.-C. Kung,
“Video coding on multicore graphics processors,”
IEEE Signal Processing Magazine, vol. 27, no. 2, pp.
79–89, 2010. Article (CrossRef Link)

[10] J. Fang, A. L. Varbanescu, and H. Sips, “A
Comprehensive Performance Comparison of CUDA
and OpenCL,” in Proceedings of the International

Conference on Parallel Processing, ICPP’11, Sep.
2011. Article (CrossRef Link)

[11] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro,
“Accelerating computer vision algorithms using
OpenCL framework on the mobile GPU – a case
study”, in IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP),
May. 2013. Article (CrossRef Link)

[12] J.H. Jun, J.H. Choi, D.Y. Lee, S.Y. Jeong, J.S. Choi,
J.O. Kim, “Implementation Acceleration of Self-
Similarity Based Image Super Resolution Using
OpenCL” , in International Workshop on Advanced
Image Technology (IWAIT) & International Forum
on Medical Imaging in Asia (IFMIA), Jan. 2015.

Jae-Hee Jun received his B.S. degree
in electronic engineering from Korea
University, Seoul, Korea, in 2013, He
is currently pursuing the M.S. degree
in electronic engineering at Korea
University, Seoul, Korea. His research
interests are image signal processing
and multimedia communications.

Ji-Hoon Choi received his B. S.
degree in electronic engineering from
Korea University, Seoul, Korea, in
2011, He is currently pursuing a Ph.D.
degree in electronic engineering at
Korea University, Seoul, Korea. His
research interests are image signal
processing and multimedia communi-

cations.

Dae-Yeol Lee received his BS and
MEng degrees in electrical and
computer engineering from Cornell
University, United States, in 2012 and
2013 respectively. In August 2013, he
joined Broadcasting and Telecommuni-
cations Media Research Department,
ETRI, Korea, where he is currently a

researcher. His research interests include image/video
processing, video coding and computer vision.

Seyoon Jeong received his BS and MS
degrees in electronics engineering
from Inha University, Korea, in 1995
and 1997 respectively, and received
hsi PhD degree in electrical
engineering from Korea Advanced
Institute of Science and Technology
(KAIST) in 2014. He joined ETRI,

Daejeon, Rep. of Korea in 1996 as a senior member of the
research staff and is now a principal researcher. His
current research interests include video coding, video
transmission and UHDTV.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6694232
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7041605
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7041605
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467423
http://dx.doi.org/10.1109/38.988747
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5459271
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5459271
http://dl.acm.org/citation.cfm?id=1944852
http://dl.acm.org/citation.cfm?id=1944852
http://www.khronos.org/opencl
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6332157
http://dx.doi.org/10.1109/MSP.2009.935416
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6047190
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6638132

IEIE Transactions on Smart Processing and Computing, vol. 4, no. 1, February 2015

15

Sukhee Cho received her BS and MS
in computer science from Pukyong
National University, Busan, Rep. of
Korea, in 1993 and 1995, and her PhD
in electrical and computer engineering
from Yokohama National University,
Yokohama, Kanagawa, Japan, in 1999.
Since 1999, she has been with the

Broadcasting and Telecommunications Media Research
Department at ETRI, Daejeon, Rep. of Korea. Her current
research interests include realistic media processing
technologies, such as video coding and the systems of
3DTV and UHDTV.

Hui Yong Kim received his BS, MS,
and Ph.D degrees from Korea
Advanced Institute of Science and
Technology (KAIST), Korea, in 1994,
1998, and 2004, respectively. From
2003 to 2005, he was the leader of
Multimedia Research Team of AddPac
Technology Co. Ltd. In November

2005, he joined the Broadcasting and Telecommunications
Media Research Laboratory of Electronics and
Telecommunications Research Institute (ETRI), Korea,
and currently serves as the director of Visual Media
Research Section. From 2006 to 2010, he was also an
affiliate professor in University of Science and Technology
(UST), Korea. From September 2013 to August 2014, he
was a visiting scholar at Media Communications Lab of
University of Southern California (USC), USA. He has
made many contributions to the development of
international standards, such as MPEG Multimedia
Application Format (MAF) and JCT-VC High Efficiency
Video Coding (HEVC), as an active technology
contributor, editor, and Ad-hoc Group co-chair in many
areas. His current research interest include image and
video signal processing and compression for realistic
media applications, such as UHDTV and 3DTV.

Jong-Ok Kim (S’05-M’06) received
his B.S. and M.S. degrees in electronic
engineering from Korea University,
Seoul, Korea, in 1994 and 2000,
respectively, and Ph.D. degree in
information networking from Osaka
University, Osaka, Japan, in 2006.
From 1995 to 1998, he served as an

officer in the Korean Air Force. From 2000 to 2003, he
was with SK Telecom R&D Center and Mcubeworks Inc.
in Korea, where he was involved in research and
development on mobile multimedia systems. From 2006 to
2009, he was a researcher in ATR (Advanced
Telecommunication Research Institute International),
Kyoto, Japan. He joined Korea University, Seoul, Korea in
2009, and is currently an associate professor. His current
research interests are in the areas of image processing and
visual communications. Dr. Kim was a recipient of a
Japanese Government Scholarship during 2003-2006.

Copyrights © 2015 The Institute of Electronics and Information Engineers

