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Abstract: This paper proposes the parallel implementation of a self-similarity based image SR 
(super-resolution) algorithm using OpenCL. The SR algorithm requires tremendous computations 
to search for a similar patch. This becomes a bottleneck for the real-time conversion from a FHD 
image to UHD. Therefore, it is imperative to accelerate the processing speed of SR algorithms. For 
parallelization, the SR process is divided into several kernels, and memory optimization is 
performed. In addition, two GPUs are used for further acceleration. The experimental results shows 
that a GPGPU implementation can speed up over 140 times compared to a single-core CPU. 
Furthermore, it was confirmed experimentally that utilizing two GPUs can speed up the execution 
time proportionally, up to 277 times.     
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1. Introduction 

As the complexity of image processing algorithms 
increases, their running time on the CPU has been 
multiplied accordingly. This has led to an increase in the 
interest in GPGPUs (general-purpose computing on 
graphics processing units). GPGPU is a technique to utilize 
a GPU device for general computational applications, 
which is typically handled by a CPU. 

Although a GPU has a much lower clock frequency 
than a CPU, it has a very large number of cores, and can 
accelerate complex computations significantly by 
parallelization. Researchers have recently examined the 
acceleration of image processing algorithms using GPGPU 
techniques [8, 9, 11, 12]. The GPGPU technology is 
categorized into two different techniques. One is CUDA, 
which was made public in 2007 by Nvidia, and the other is 
OpenCL, which was released by the Khronos group in 
2008 [7]. Some studies have compared CUDA with 
OpenCL, such as [10]. OpenCL is an open, general-
purpose parallel framework that is renowned for its good 
portability. 

This paper proposes the parallel implementation of the 
self-similarity based image SR (super resolution) 

algorithm using OpenCL. The SR algorithm, which was 
proposed previously exploits the inherent self-similarity of 
an image [1, 2], but it requires tremendous computations to 
search for a similar patch. In addition, the SR technique is 
applied primarily to the resolution conversion from FHD 
(Full HD) to UHD (Ultra HD) which has just begun to be 
commercialized popularly. The amount of the UHD image 
data is 4 times that of FHD. Therefore, common software 
implementation makes it difficult to work in a real-time 
manner. Accordingly, accelerating the processing speed of 
SR algorithms is indispensable.  

For parallelization, the SR process is divided into 
several kernels, and memory optimization is performed. In 
addition, two GPUs are utilized for further acceleration. 
The experimental results show that GPGPU 
implementation can speed up the SR process significantly 
compared to a single-core CPU. 

The remainder of this paper is organized as follows. 
Section 2 introduces the super resolution algorithm that 
was implemented with OpenCL. Section 3 briefly explains 
the OpenCL implementation in detail, particularly focusing 
on memory optimization and support to the multiple GPU 
devices. Section 4 presents the experimental results. 
Section 5 concludes the paper.  
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2. Super-Resolution Algorithm 

The goal of SR is to reconstruct a HR (high resolution) 
image from one or more observed LR (low resolution) 
images. Recently, a number of SR methods have been 
proposed to exploit the property of self-similarity in an 
image. 

In natural images, small patches tend to recur 
redundantly across the scale as well as in-scale. This 
observation is referred to as self-similarity, and has been 
exploited popularly for image processing, such as de-
noising, edge detection and retargeting [3]. In addition, it 
has been applied to learning-based image SR in recent 
years [6]. 

SR methods based on self-similarity can be classified 
into two categories, depending on the domain to which the 
self-similarity assumption is applied; spatial domain and 
LF (low frequency)-HF (high frequency) domain. 

Self-similarity with the LF-HF domain is almost equal 
to the learning based method, such as [4]. Unlike the 
traditional example-based method, however, self-similarity 
based SR on the LF-HF domain does not require any prior 
databases. Therefore, this method can reduce the 
computational complexity and memory consumption, 
compared to the conventional learning based approach. 

The self-similarity-based SR method consists of three 
parts overall, as follows: the generation of image pyramids 
for both LF and HF components, HF reconstruction-based 
on self-similarity, and back projection after combining the 
LF and HF components. First of all, an input LR image is 
decomposed into LF and HF components, which are given 
by 
 
 LFLR = H(ILR) (1) 

 HFLR = ILR - LFLR (2) 
 

where H is a blurring operator, LFLR is the blurred image 
of an input image. After decomposition, an HR image is 
initially obtained by simply interpolating the input image. 
This HR image can be considered the LF component of the 
target HR image, which is denoted by LFHR. Scaling is 
increased gradually to a target scale by a factor of 1.25. An 
incremental coarse-grained method using a small scale 
factor was reported to produce a more elaborate result [5]. 

For the reconstruction of HFHR, for every patch pi in 
the image LFHR, the most similar patch pj is searched on 
the LFLR domain. The corresponding HFLR patch is then 
copied to query the patch. By merging the LFHR and HFHR 
image, an HR image, IHR, can be reproduced as follows. 

 
 HFHR (pi) = HFLR (pj) (3) 
 IHR = LFHR + HFHR (4) 

 
In this way, hierarchical HF reconstructions in the 

image pyramid are repeated until the target HR is achieved. 
Fig. 1 presents the overall processes of the SR algorithm. 

3. Implementation Using OpenCL 

This section present a parallel implementation of the 
SR algorithm. First, the SR process is divided into a couple 
of kernels, and the problem of the race condition, which 
actually occurs in searching similar patches, is then 
addressed. Next, memory optimization is performed based 
on the memory model. Finally, we deal with how to handle 
multiple GPU devices for further acceleration.  

A kernel is a unit of code that represents a single 

 

Fig. 1. Tasks of the self-similarity based SR algorithm. 
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executing instance in a GPU. This single kernel instance 
corresponds to a work item in OpenCL. When the work-
item and work-group are designed, both GPU specification 
and image resolution should be considered simultaneously. 
32x32 work-items are designated as a work-group. The 
kernels for the SR algorithm are designed, as listed in 
Table 1 according to tasks and synchronization points. For 
further optimization of the OpenCL implementation, the 
individual kernel running time is measured using 
performance profiler, as listed in Table 1.  

The kernel used to find the best matching patch is the 
most time-consuming execution in the SR process. Hence, 
special optimization of this kernel is essential for better 
speed acceleration. This will be discussed in Section 3.2. 

3.1 Race Condition 
When the ‘Find similar patch’ kernel is running, two or 

more work-items may reference the address value of a 
single pixel at the same time. At this time, the race 
condition occurs, which indicates the situation where 
multiple work-items simultaneously accesses a certain 
pixel to be declared in the global memory. To overcome 
this conflict, a serialization method is adopted by the atom 
command provided by OpenCL. Note that the use of the 
atomic command ensures the correctness of local memory 
by serialization. 

Fig. 2 illustrates the occurrence of the race condition 
and its solution. 

3.2 Memory Optimization     
Next, the memory optimization step is described. 

OpenCL defines a hierarchical memory model, as shown 
in Fig. 3. Local memory is manufactured by on chip, and it 
is much faster than global memory. In addition, OpenCL 
provides image memory that is specialized for accessing 
image data. Image memory requires fewer GPU cycles 
when data is read, so its access speed is much faster than 
global memory. In this paper, speed acceleration is 
optimized based on two memory model, which are image 
buffer and local memory. 

At the ‘Find similar patch’ kernel, similar patches are 
searched in the surrounding local area of a target patch, 
and all pixel data in the search area are loaded into the 
local memory at one time. This can accelerate the memory 
access speed better than global memory.  

The local memory is divided into two memory banks. 
To achieve high memory bandwidth (or high speed), all 
work-items should be split evenly into each bank to reduce 
the number of work-items per bank as much as possible. If 
many work-items are assigned to a certain bank unevenly, 
it takes more time due to serialization. This phenomenon is 
the so called bank conflict, and it should be avoided when 
local memory is used.  

Table 1. Kernel design and computational time.

Procedure Kernel name Time(㎲)
LF/HF subtract Conv & Sub 6,237 
Interpolation imgScaler 3,611 

Find similar patch SSSR & Setzero 353,347 
Patch mapping Add & Div 2,897 
LF/HF merge Add 1,179 

Back Projection Conv & Add & Sub 4,834 
 

 

Fig. 2. Race condition and its solution. 

 

 

 

Fig. 3. OpenCL memory model. 
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3.3 Support to Multiple GPUs 
To utilize multiple GPU devices, a command queue 

should be prepared for each GPU individually. On the 
other hand, context can be shared among multiple 
command queues or each queue can have its own context. 
The former is a single context-based implementation. This 
is a typical way to work with multiple devices. When 
multiple devices use the same context, most of the 
OpenCL objects are shared (e.g., kernel, program, and 
memory objects). As mentioned above, one command 
queue should be generated per GPU; hence, multiple 
command queues are needed within the same context. This 
approach is suitable for the algorithm that uses less 
memory. 

Another implementation approach is to define the 
different contexts per device separately. This is commonly 
used in computing on a heterogeneous device system (e.g., 
CPU and GPU). Data is handled independently among 
multiple contexts, and system crashes can be avoided.  

Fig. 4 illustrates the actual implementation of the 
above-mentioned two approaches in the case of two GPUs. 
Suppose that video frames are super-resolved on two 
GPUs. As shown in Fig. 4(a), the image data is split into 
two devices at a frame level. In other words, the odd 
frames are processed into one GPU, and the even frames 
are processed into the other one. When a single context is 
adopted, a video frame is split equally into two segments, 
and each segment is processed independently of each GPU, 
as shown in Fig. 4(b). 

4. Experimental Results 

The experiments are performed on an Nvidia GeForce 
GTX-780 device. The host machine is an Intel® Core™ 
i5-4590 CPU @ 3.30Ghz, 64 bits compatible. The 
OpenCL programs were developed using Visual Studio 
2012 and OpenCL version 1.1. The test application was to 
super-resolve from a 1920 x 1080 FHD image to a 
3840x2160 UHD using the self-similarity based SR 
method in Section 2. The performance was measured by 
the total execution time of all kernel functions in a GPU. 
The execution time was measured by Nsight, a profiling 
tool provided by Nvidia. 

The parallel implementation in GPU speeds up the 
running time, as confirmed in Table 2. In particular, if the 
local memory based optimization is performed, the 
algorithm running speed can be accelerated further by 
approximately 2 times compared to the non-memory-
optimization. When each GPU uses its own context 
separately, the execution speed can be made approximately 
277 times faster than that of a single core CPU. 

In a single context approach, an image is partitioned 
equally into two segments, and half of the image is 
processed into each GPU. When there are super-resolving 
pixels near the border line between two image segments, 
the pixel data of the other image segment is needed to find 
a similar patch. Therefore, for a single context approach, 
more than half an image is actually transferred to 
individual GPUs. This leads to more transfer time between 

the CPU and GPU.  

5. Conclusion 

This paper proposed a parallel implementation of a 
complex image SR algorithm using OpenCL for speed 
acceleration. Global memory synchronization was solved 

(a) Multiple context 
 

(b) Single context 

Fig. 4. Two ways to utilize multiple devices in OpenCL.
 

Table 2. Running time comparisons. 

# of device Implementation method Time(s) 
CPU (1 core) 25.209 

GPU 0.388 
GPU (image buffer) 0.273 

1 

GPU (local memory) 0.169 
2 GPU (2 context) 0.091 2 
2 GPU (1 context) 0.098 
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using the race condition. In the SR algorithm, finding a 
similar patch was very time-consuming; its speed could be 
accelerated using the local memory. In addition, two GPUs 
were utilized for further acceleration. The experimental 
results showed that GPGPU implementation can speed up 
the process by more than 140 times compared to that using 
a single-core CPU. Furthermore, it was confirmed 
experimentally that the use of two GPUs can accelerate the 
execution time proportionally, by up to 277 times. 
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