DOI QR코드

DOI QR Code

Image Processing Methods for Measurement of Lettuce Fresh Weight

  • Jung, Dae-Hyun (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Park, Soo Hyun (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Han, Xiong Zhe (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Kim, Hak-Jin (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
  • Received : 2015.01.06
  • Accepted : 2015.02.22
  • Published : 2015.03.01

Abstract

Purpose: Machine vision-based image processing methods can be useful for estimating the fresh weight of plants. This study analyzes the ability of two different image processing methods, i.e., morphological and pixel-value analysis methods, to measure the fresh weight of lettuce grown in a closed hydroponic system. Methods: Polynomial calibration models are developed to relate the number of pixels in images of leaf areas determined by the image processing methods to actual fresh weights of lettuce measured with a digital scale. The study analyzes the ability of the machine vision- based calibration models to predict the fresh weights of lettuce. Results: The coefficients of determination (> 0.93) and standard error of prediction (SEP) values (< 5 g) generated by the two developed models imply that the image processing methods could accurately estimate the fresh weight of each lettuce plant during its growing stage. Conclusions: The results demonstrate that the growing status of a lettuce plant can be estimated using leaf images and regression equations. This shows that a machine vision system installed on a plant growing bed can potentially be used to determine optimal harvest timings for efficient plant growth management.

Keywords

References

  1. Bumgarner, N. R., W. S. Miller and M. D. Kleinhenz. 2012. Digital image analysis to supplement direct measures of lettuce biomass. HortTechnology 22(4):547-555.
  2. Casadesus, J., Y. Kaya, J. Bort, M. M. Nachit, J. L. Araus, S. Amor, G. Ferrazzano, F. Maalouf, M. Maccaferri, V. Martos, H. Ouabbou and D. Villegas. 2007. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Annals of applied biology 150(2):227-236. https://doi.org/10.1111/j.1744-7348.2007.00116.x
  3. Campillo, C., M. H. Prieto, C. Daza, M. J. Monino and M. I. Garcia. 2008. Using digital images to characterize canopy coverage and light interception in a processing tomato crop. Hortscience 43(6):1780-1786.
  4. Chaudhary, P., S. Godara, A. N. Cheeran and A. K. Chaudhari. 2012. Fast and accurate method for leaf area measurement. International Journal of Computer Applications 49(9):22-25. https://doi.org/10.5120/7655-0757
  5. Easlon, H. M and A. J. Bloom. 2014. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in plant sciences 2(7):1400033. https://doi.org/10.3732/apps.1400033
  6. Ide, R and H. Oguma. 2010. Use of digital cameras for phenological observations. Ecological Informatics 5(5): 339-347. https://doi.org/10.1016/j.ecoinf.2010.07.002
  7. Karn, A., C. Ellis, R. Arndt and J. Hong. 2014. An integrative image measurement technique for dense bubbly flows with a wide size distribution. Chemical Engineering Science 122:240-249.
  8. Kataoka, T., T. Kaneko, H. Okamoto and S. Hata. 2003. Crop growth estimation system using machine vision. In Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. 2003 IEEE/ASME International Conference on (Vol. 2, pp. b1079-b1083). IEEE.
  9. Kim, H. J., W. K. Kim, M. Y. Roh, C. I. Kang, J. M. Park and K. A. Sudduth. 2013. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Computers and Electronics in Agriculture 93:46-54. https://doi.org/10.1016/j.compag.2013.01.011
  10. Lati, R. N., S. Filin and H. Eizenberg. 2011. Robust methods for measurement of leaf-cover area and biomass from image data. Weed Science 59(2):276-284. https://doi.org/10.1614/WS-D-10-00054.1
  11. Lee, W. S., V. Alchanatis, C. Yang, M. Hirafuji, D. Moshou and C. Li. 2010. Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture 74(1):2-33. https://doi.org/10.1016/j.compag.2010.08.005
  12. Li, Y., D. Chen, C. N. Walker and J. F. Angus. 2010. Estimating the nitrogen status of crops using a digital camera. Field Crops Research 118(3):221-227. https://doi.org/10.1016/j.fcr.2010.05.011
  13. Macfarlane, C., M. Hoffman, D. Eamus, N. Kerp, S. Higginson, R. McMurtrie and M. Adams. 2007. Estimation of leaf area index in eucalypt forest using digital photography. Agricultural and forest meteorology 143(3): 176-188. https://doi.org/10.1016/j.agrformet.2006.10.013
  14. Neeser, C., Martin, A. R., Juroszek, P and D. A. Mortensen. 2009. A comparison of visual and photographic estimates of weed biomass and weed control. Weed Technology 14(3):586-590. https://doi.org/10.1614/0890-037X(2000)014[0586:ACOVAP]2.0.CO;2
  15. Park, S. H., H. Lee and S. H. Noh. 2014. Multispectral wavelength selection to detect 'fuji' apple surface defects with pixel-sampling analysis. Journal of biosystems engineering 39(3):166-173. https://doi.org/10.5307/JBE.2014.39.3.166
  16. Sandmann, M., J. Graefe and C. Feller. 2013. Optical methods for the non-destructive estimation of leaf area index in kohlrabi and lettuce. Scientia horticulturae 156: 113-120. https://doi.org/10.1016/j.scienta.2013.04.003
  17. Son, D., S. H. Park, S. Chung, E. S. Jeong, S. Park, M. Yang, H.-S. Hwang and S. I. Cho. 2014. Correlation analysis between growth factors of seed sprouts and pixel counts of leaf area. Journal of biosystems engineering 39(4):318-323. https://doi.org/10.5307/JBE.2014.39.4.318
  18. Stewart, A. M., K. L. Edmisten, R. Wells and G. D. Collins. 2007. Measuring canopy coverage with digital imaging. Communications in soil science and plant analysis 38(7-8):895-902. https://doi.org/10.1080/00103620701277718

Cited by

  1. Evaluation of Borage Extracts As Potential Biostimulant Using a Phenomic, Agronomic, Physiological, and Biochemical Approach vol.8, 2017, https://doi.org/10.3389/fpls.2017.00935