DOI QR코드

DOI QR Code

Spectroscopic Techniques for Nondestructive Detection of Fungi and Mycotoxins in Agricultural Materials: A Review

  • Min, Hyunjung (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University)
  • 투고 : 2015.02.12
  • 심사 : 2015.02.23
  • 발행 : 2015.03.01

초록

Purpose: Fungal secondary metabolite (mycotoxin) contamination in foods can pose a serious threat to humans and animals. Spectroscopic techniques have proven to be potential alternative tools for early detection of mycotoxins. Thus, the aim of this review is to provide an overview of the current developments in nondestructive food safety testing techniques, particularly regarding fungal contamination testing in grains, focusing on the application of spectroscopic techniques to this problem. Methods: This review focuses on the use of spectroscopic techniques for the detection of fungi and mycotoxins in agricultural products as reported in the literature. It provides an overview of the characteristics of the main spectroscopic methods and reviews their applications in grain analysis. Results: It was found that spectroscopy has advantages over conventional methods used for fungal contamination detection, particularly when combined with chemometrics. These advantages include the rapidness and nondestructive nature of this approach. Conclusions: While spectroscopy offers many benefits for the detection of mycotoxins in agricultural products, a number of limitations exist, which must be overcome prior to widespread adoption of these techniques.

키워드

참고문헌

  1. Abramovi, B., I. Jaji, B. Abramovi, J. Caosi and V. Juri. 2007. Detection of deoxynivalenol in wheat by fourier transform infrared spectroscopy. Acta Chimica Slovenica 54:859-867.
  2. Adams, M. J. 2004. Chemometrics in analytical spectroscopy. Royal Society of Chemistry.
  3. Alishahi, A., H. Farahmanda, N. Prietob and D. Cozzolinoc. 2010. Identification of transgenic foods using NIR spectroscopy: a review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 75.1:1-7. https://doi.org/10.1016/j.saa.2009.10.001
  4. Ariana, D. P., R. Lua and D. E. Guyer. 2006. Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Computers and Electronics in Agriculture 53:60-70. https://doi.org/10.1016/j.compag.2006.04.001
  5. Bauriegel, E., A. Giebela, M. Geyerb, U. Schmidtc, and W. B. Herppichb. 2011. Early detection of fusarium infection in wheat using hyper-spectral imaging. Computers and Electronics in Agriculture 75(2):304-312. https://doi.org/10.1016/j.compag.2010.12.006
  6. Berardo, N., V. Pisacane, P. Battilani, A. Scandolara, A. Pietri and A. Marocco. 2005. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry 53:8128-8134. https://doi.org/10.1021/jf0512297
  7. Bozza, A., S. M. Tralamazz, J. I. Rodriguez, M. B. S. Scholz, D. T. Reynaud, P. R. Dalzoto and I. C. Pimentel. 2013. Potential of fourier transform infrared spectroscopy (FT-IR) to detection and quantification of ochratoxin A: A Comparison between reflectance and transmittance techniques International Journal of Pharmaceutical, Chemical and Biological Sciences 3(4):1242-1247.
  8. Bryden, W. L. 2012. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology 173(1):134-158. https://doi.org/10.1016/j.anifeedsci.2011.12.014
  9. Cen, H and Y. He. 2007. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology 18:72-83. https://doi.org/10.1016/j.tifs.2006.09.003
  10. Chan, E. C. Y. 1996. The applications of Raman spectroscopy in food science. Trends in Food Science & Technology November 1996 Vol.7. https://doi.org/10.1016/S0924-2244(96)10037-6
  11. Cho, B. K., M. S. Kim, I. S. Baek, D. Y. Kim, W. H. Lee, J. K. Kim, H. H. Bae and Y. S. Kim. 2013. Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence Imagery. Postharvest Biology and Technology 76:40-49. https://doi.org/10.1016/j.postharvbio.2012.09.002
  12. Christopher, N. G. S. 1997. Trends in Food Science & Technology September 1997. 8.
  13. Cogdill, R. P., C. R. Jr. Hurburgh, G. R. Rippke, S. J. Bajic, R. W. Jones, J. F. McClelland, T. C. Jensen and J. H. Liu. 2004. Single-kernel maize analysis by near-infrared hyperspectral imaging. American Society of Agricultural Engineers.
  14. Creppy, E. E. 2002. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters 127(1):19-28. https://doi.org/10.1016/S0378-4274(01)00479-9
  15. D'Mello, J. P. F and A. M. C. Macdonald. 1997. Mycotoxins. Animal Feed Science and Technology 69:155-166. https://doi.org/10.1016/S0377-8401(97)81630-6
  16. Egmond, H. P. V., R. C. Schothorst and M. A. Jonker. 2007. Regulations relating to mycotoxins in food. Analytical and Bioanalytical Chemistry 389(1):147-157. https://doi.org/10.1007/s00216-007-1317-9
  17. ElMasry, G., N. Wang, A. ElSayed and M. Ngadi. 2007. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering 81:98-107. https://doi.org/10.1016/j.jfoodeng.2006.10.016
  18. Fiore, A. D., M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A. A. Fabbri, G. Bonifazi and C. Fanelli. 2010. Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. International Journal of Food Microbiology 144:64-71. https://doi.org/10.1016/j.ijfoodmicro.2010.08.001
  19. Firrao, G., E. Torelli, E. Gobbi, S. Raranciuc, G. Bianchi and R. Locci. 2010. Prediction of milled maize fumonisin contamination by multispectral image Analysis. Journal of Cereal Science 52:327-330. https://doi.org/10.1016/j.jcs.2010.06.017
  20. Gaspardo, B., S. D. Zotto, E. Torelli, S. R. Cividino, G. Firrao, G. D. Riccia and B. Stefanon. 2012. A rapid method for detection of fumonisins B1 and B2 in corn meal using fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere. Food Chemistry 135:1608-1612. https://doi.org/10.1016/j.foodchem.2012.06.078
  21. Geladi, P. 2003. Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochimica Acta Part B: Atomic Spectroscopy 58.5:767-782. https://doi.org/10.1016/S0584-8547(03)00037-5
  22. Giacomo, D. R and D. Z. Stefania. 2013. A multivariate regression model for detection of fumonisins content in maize from near infrared spectra. Food Chemistry 141:4289-4294. https://doi.org/10.1016/j.foodchem.2013.07.021
  23. Girolamo, A. D., S. Cervellieri, A. Visconti and M. Pascale. 2014. Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy. Toxin 6:3129-3143. https://doi.org/10.3390/toxins6113129
  24. Gordon, S. H., R. W. Jones, J. F. McClelland, D. T. Wicklow and R. V. Greene. 1999. Transient infrared spectroscopy for detection of toxigenic fungi in corn: potential for on-line evaluation. Journal of Agricultural and Food Chemistry 47:5267-5272. https://doi.org/10.1021/jf990011f
  25. Gowen, A. A., C. P. O'Donnell, P. J. Cullen, G. Downey and J. M. Frias. 2007. Hyperspectral imaging an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology 18: 590-598. https://doi.org/10.1016/j.tifs.2007.06.001
  26. Herrero, A. M. 2008. Raman spectroscopy a promising technique for quality assessment of meat and fish: A review. Food Chemistry 107(4):1642-1651. https://doi.org/10.1016/j.foodchem.2007.10.014
  27. Hohler, D. 1998. Ochratoxin A in food and feed: occurrence, legislation and mode of action. Zeitschrift fur Ernahrungswissenschaft 37(1):2-12. https://doi.org/10.1007/PL00007368
  28. Huang, H., H. Yu, H. R. Xu and Y. B. Ying. 2008. Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review. Journal of Food Engineering 87:303-313. https://doi.org/10.1016/j.jfoodeng.2007.12.022
  29. Hussein, H. S and M. B. Jeffrey. 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals Toxicology 167(2):101-134. https://doi.org/10.1016/S0300-483X(01)00471-1
  30. IARC, International Agency for Research on Cancer, Geneva. 1993b, 56, pp. 489.
  31. IARC, International Agency for Research on Cancer, Geneva. 2002, 82, pp. 301.
  32. IARC, International Agency for Research on Cancer, Geneva. 1993a, 56, pp. 245.
  33. Ibanez, V. F., A. Soldado, A. M. Fernandez and B. de la R. Delgado. 2009. Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment. Food Chemistry 113: 629-634. https://doi.org/10.1016/j.foodchem.2008.07.049
  34. Jin, J., L. Tanga, Z. Hrusk and H. Yao. 2009. Classification of toxigenic and atoxigenic strains of aspergillus flavus with hyperspectral imaging. Computers and Electronics in Agriculture 69:158-164. https://doi.org/10.1016/j.compag.2009.07.023
  35. Jouany, J. P. 2007. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Science and Technology 137(3):342-362. https://doi.org/10.1016/j.anifeedsci.2007.06.009
  36. Kalkan, H., P. Beriat, Y. Yardimci and T. C. Pearson. 2011. Detection of contaminated hazelnuts and ground red chili pepper flakes by multispectral imaging. Computers and Electronics in Agriculture 77:28-34. https://doi.org/10.1016/j.compag.2011.03.005
  37. Kamruzzaman, M., G. ElMasrya, D. W. Suna and P. Allenb. 2012. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Analytica Chimica Acta 714: 57-67. https://doi.org/10.1016/j.aca.2011.11.037
  38. Karoui, R and C. Blecker. 2011. Fluorescence spectroscopy measurement for quality assessment of food systems-a review. Food Bioprocess Technology 4:364-386. https://doi.org/10.1007/s11947-010-0370-0
  39. Kneipp, K., Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari and M. S. Feld. 1997. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters 78(9):1667. https://doi.org/10.1103/PhysRevLett.78.1667
  40. Koppen, R., M. Koch, D. Siegel, S. Merkel, R. Maul and I. Nehls. 2010. Determination of mycotoxins in foods: current state of analytical methods and limitations. Applied Microbiology and Biotechnology 86:1595-1612. https://doi.org/10.1007/s00253-010-2535-1
  41. Kos, G., H. Lohninger and R. Krska. 2003. Development of a method for the determination of fusarium fungi on corn using mid-infrared spectroscopy with attenuated total reflection and chemometrics. Analytical Chemistry 75:1211-1217. https://doi.org/10.1021/ac0260903
  42. Kos, G., R. Krska, H. Lohninger and P. R. Griffiths. 2004. A comparative study of mid-infrared diffuse reflection (DR) and attenuated total reflection (ATR) spectroscopy for the detection of fungal infection on RWA2-corn. Analytical and Bioanalytical Chemistry 378:159-166. https://doi.org/10.1007/s00216-003-2245-y
  43. Krska, R., P. S. Ullrich, A. Molinelli, M. Sulyok, S. MacDonald and C. Crews. 2008. Mycotoxin analysis: an update. Food Additives and Contaminants 25(2):152-163. https://doi.org/10.1080/02652030701765723
  44. Lee, K. M., T. J. Herrman and U. Yun. 2014a. Application of raman spectroscopy for qualitative and quantitative analysis of aflatoxins in ground maize samples. Journal of Cereal Science 59:70-78. https://doi.org/10.1016/j.jcs.2013.10.004
  45. Lee, K. M., T. J. Herrman, Y. Bisrat and S. C. Murray. 2014b. Feasibility of surface-enhanced raman spectroscopy for rapid detection of aflatoxins in maize. Journal of Agricultural and Food Chemistry 62:4466-4474. https://doi.org/10.1021/jf500854u
  46. Leslie, J. F., R. Bandyopadhyay and A. Visconti. 2008. Mycotoxins: detection methods, management, public health and agricultural trade : CAB International.
  47. Lorente, D., N. Aleixos, J. G. Sanchis, S. Cubero, O. L. G. Navarrete and J. Blasco. 2012. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technology 5:1121-1142. https://doi.org/10.1007/s11947-011-0725-1
  48. Magwaza, L. S., U. L. Opara, H. Nieuwoudt, P. J. R. Cronje, W. Saeys and B. Nicolai. 2012. NIR spectroscopy applications for internal and external quality analysis of citrus fruit-a review. Food Bioprocess Technology 5:425-444 https://doi.org/10.1007/s11947-011-0697-1
  49. Mariey, L., J. P. Signolle, C. Amiel and J. Travert. 2001. Discrimination, classification, identification of microorganisms using FT-IR spectroscopy and chemometircs. Vibrational Spectroscopy 26:151-159. https://doi.org/10.1016/S0924-2031(01)00113-8
  50. Mehl, P. M., Y. R. Chen, M. S. Kim and D. E. Chan. 2004. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering 61(1):67-81. https://doi.org/10.1016/S0260-8774(03)00188-2
  51. Montalban, J. M. P., A. D. Juan and A. Ferrer. 2011. Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems 107:1-23. https://doi.org/10.1016/j.chemolab.2011.03.002
  52. Munkvold, G. P and A. E. Desjardins. 1997. Fumonisins in maize: Can we reduce their occurrence?. Plant Disease 81(6):556-565. https://doi.org/10.1094/PDIS.1997.81.6.556
  53. Natalia, A. M., J. F. H. Perez, A. G. Campana and L. G. Gracia. 2014. Mycotoxin Analysis: New Proposals for Sample Treatment. Advance in Chemistry 2014 (2014).
  54. Newberne, P. M and W. H. Butler. 1969. Acute and chronic effects of aflatoxin on the liver of domestic and laboratory animals: a review. Cancer Research 29(1): 236-250.
  55. Nicolai, B. M., K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron and J. Lammertyna. 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology 46:99-118. https://doi.org/10.1016/j.postharvbio.2007.06.024
  56. Peiris, K. H. S., M. O. Pumphrey and F. E. Dowell. 2009. NIR absorbance characteristics of deoxynivalenol and of sound and Fusarium-damaged wheat kernels. Jounal of Near Infrared Spectroscopy 17:213-221. https://doi.org/10.1255/jnirs.846
  57. Pestka, J. J. 2007. Deoxynivalenol: toxicity, mechanisms and animal health risks. Animal Feed Science and Technology 137(3):283-298. https://doi.org/10.1016/j.anifeedsci.2007.06.006
  58. Pettersson, H and L. Aberg. 2003. Near infrared spectroscopy for determination of mycotoxins in cereals. Food Control 14:229-232. https://doi.org/10.1016/S0956-7135(03)00011-2
  59. Petzinger, E and A. Weidenbach. 2002. Mycotoxins in the food chain: the role of ochratoxins. Livestock Production Science 76.3:245-250. https://doi.org/10.1016/S0301-6226(02)00124-0
  60. Placinta, C. M., J. P. F. D'mello and A. M. C. Macdonald. 1999. A review of worldwide contamination of cereal grains and animal feed with fusarium mycotoxins. Animal Feed Science and Technology 78(1):21-37. https://doi.org/10.1016/S0377-8401(98)00278-8
  61. Qiao, J., M. O. Ngadi, N. Wang, C. Gariepy and S. O. Prasher. 2007. Pork quality and marbling level assessment using a hyperspectral imaging system. Journal of Food Engineering 83:10-16. https://doi.org/10.1016/j.jfoodeng.2007.02.038
  62. Roggo, Y., P. Chalus, L. Maurer, C. L. Martinez, A. Edmond and N. Jent. 2007. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. Journal of Pharmaceutical and Biomedical Analysis 44:683-700. https://doi.org/10.1016/j.jpba.2007.03.023
  63. Rossel, R. A. V. 2008. ParLeS: Software for chemometric analysis of spectroscopic data. Chemometrics and intelligent laboratory systems 90.1:72-83. https://doi.org/10.1016/j.chemolab.2007.06.006
  64. Saeger, D., Sarah. 2011. Determining mycotoxins and mycotoxigenic fungi in food and feed: Woodhead Publishing Limited.
  65. Sapsford, K. E., C. R. Taitt, S. Fertig, M. H. Mooreb, M. E. Lassman, C. M. Maragos and L. C. S. Lake. 2006. Indirect competitive immunoassay for detection of aflatoxin B1 in corn and nut products using the array biosensor. Biosensors and Bioelectronics 21:2298-2305. https://doi.org/10.1016/j.bios.2005.10.021
  66. Shahin, M. A and S. J. Symons. 2011. Detection of fusarium damaged kernels in canada western red spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis. Computers and Electronics in Agriculture 75:107-112. https://doi.org/10.1016/j.compag.2010.10.004
  67. Singh, C. B., D. S. Jayas, J. Paliwal and N. D. G. White. 2009a. Detection of insect-damaged wheat kernels using nearinfrared hyperspectral imaging. Journal of stored products research 45:151-158. https://doi.org/10.1016/j.jspr.2008.12.002
  68. Singh, C. B., D. S. Jayas, J. Paliwal and N. D. G. White. 2012b. Fungal damage detection in wheat using short-wave near-infrared hyperspectral and digital colour imaging. International Journal of Food Properties 15:11-24. https://doi.org/10.1080/10942911003687223
  69. Sirisomboon, C. D., R. Putthang and P. Sirisomboon. 2013. Application of near infrared spectroscopy to detect aflatoxigenic fungal contamination in rice. Food Control 33:207-214. https://doi.org/10.1016/j.foodcont.2013.02.034
  70. Stuart, B. 2004. Infrared Spectroscopy: fundamentals and applications. England: John Wiley & Sons Ltd.
  71. Sweeney, M. J and A. D. W. Dobson. 1998. Mycotoxin production by aspergillus, fusarium and penicillium species. International Journal of Food Microbiology 43(3):141-158. https://doi.org/10.1016/S0168-1605(98)00112-3
  72. Tallada, J. G., D. T. Wicklow, T. C. Pearson and P. R. Armstrong. 2011. Detection of fungus-infected corn kernels using near-infrared reflectance spectroscopy and color imaging. Transactions of the ASABE 54(3): 1151-1158. https://doi.org/10.13031/2013.37090
  73. Turner, N. W., S. Subrahmanyam and S. A. Piletsky. 2009. Analytical methods for determination of mycotoxins: A review. Analytica Chimica Acta 632:168-180. https://doi.org/10.1016/j.aca.2008.11.010
  74. Vargas, A. M., M. S. Kim, Y. T. Lefcourt, A. M., Chen, Y. R., Y. G. Luo and Y. S. Song and R. Buchanan. 2005. Detection of fecal contamination on cantaloupes using hyperspectral fluorescence imagery. Journal of Food Science 70(8):471-476.
  75. Varmuza, K and P. Filzmoser. 2009. Introduction to multivariate statistical analysis in chemometrics. CRC press.
  76. Wang, W., C. Li, E. W. Tollner, R. D. Gitaitis and G. C. Rains. 2012. Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions. Journal of Food Engineering 109:38-48. https://doi.org/10.1016/j.jfoodeng.2011.10.001
  77. Wang, W., G. W. Heitschmidt, W. R. Windham, P. Feldner, X. Z. Ni and X. Chu. 2014. Feasibility of detecting aflatoxin b1on inoculated maize kernels surface using Vis/NIR hyperspectral imaging. Journal of Food Science 80(1):116-122.
  78. Wang, W., K. C. Lawrence, X. Z. Ni, S. C. Yoon, G. W. Heitschmidt and P. Feldner. 2015. Near-infrared hyperspectral imaging for detecting aflatoxin B1 of maize kernels. Food Control 51:347-355. https://doi.org/10.1016/j.foodcont.2014.11.047
  79. Williams, P. J., P. Geladi, T. J. Britz and M. Manley. 2012a. Growth characteristics of three fusarium species evaluated by near-infrared hyperspectral imaging and multivariate image analysis. Applied Microbiology and Biotechnology 803-813.
  80. Williams, P. J., P. Geladi, T. J. Britz and M. Manley. 2012b. Investigation of fungal development in maize kernels using NIR hyperspectral imaging and multivariate data analysis. Journal of Cereal Science 55:272-278. https://doi.org/10.1016/j.jcs.2011.12.003
  81. Williams, P. J., P. Geladi, T. J. Britz and M. Manley. 2012c. Near-infrared (NIR) hyperspectral imaging and multivariate image analysis to study growth characteristics and differences between species and strains of members of the genus fusarium. Analytical and Bioanalytical Chemistry 404:1759-1769. https://doi.org/10.1007/s00216-012-6313-z
  82. Williams, P., P. Geladi, G. Fox and M. Manley. 2009. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Analytica Chimica Acta 653:121-130. https://doi.org/10.1016/j.aca.2009.09.005
  83. Yao, H., Z. Hruska, R. Kincaid, O. R. L. B. Ambrose and T. E. Cleveland. 2010. Spectral angle mapper classification of fluorescence hyperspectral image for aflatoxin contaminated corn. Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on. IEEE. pp. 1-4.
  84. Yao, H., Z. Hruska, R. Kincaid, R. L. Brown and T. E. Cleveland. 2008. Differentiation of toxigenic fungi using hyperspectral imagery. Sensonry and Instrumentation for Food Quality 2:215-224. https://doi.org/10.1007/s11694-008-9055-z
  85. Yao, H., Z. Hruska, R. Kincaid, R. L. Brown, D. Bhatnagar and T. E. Cleveland. 2013. Detecting maize inoculated with toxigenic and atoxigenic fungal strains with fluorescence hyperspectral imagery. Biosystems Engineering 115:125-135. https://doi.org/10.1016/j.biosystemseng.2013.03.006
  86. Zhang, R., Y. Ying, X. Q. Raoa and J. B. Lia. 2012. Quality and safety assessment of food and agricultural products by hyperspectral fluorescence imaging. Journal of the Science of Food and Agriculture 92:2397-2408. https://doi.org/10.1002/jsfa.5702
  87. Zheng, J and L. He. 2014. Surface-enhanced raman spectroscopy for the chemical analysis of food. Comprehensive reviews in food science and food safety 13.
  88. Zinedine, A., J. M. Soriano, J. C. Moltob and J. Manesb. 2007. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and Chemical Toxicology 45.1:1-18. https://doi.org/10.1016/j.fct.2006.07.030

피인용 문헌

  1. Implementation of chemometrics in quality evaluation of food and beverages 2018, https://doi.org/10.1080/10408398.2016.1276883
  2. Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley) vol.10, pp.1, 2018, https://doi.org/10.3390/toxins10010038
  3. Sensing and characterization of bisphenol “AF” with mid-infrared spectroscopy and searching the commonality among bisphenol “A,” “S,” and “AF” vol.35, pp.12, 2018, https://doi.org/10.1364/JOSAB.35.0000C8
  4. Miniature integrated micro-spectrometer array for snap shot multispectral sensing vol.27, pp.4, 2019, https://doi.org/10.1364/OE.27.005719