Acknowledgement
Supported by : Ministry of Land, Infrastructure and Transport of Korean government
References
- ACI Committee 315. (2004). ACI Detailing Manual-2004. Farmington Hills, MI: Publication SP-66(04), American Concrete Institute.
- Choi, H., & Kim, J. (2011). Progressive collapse-resisting capacity of reinforced concrete beam-column subassemblage. Magazine of Concrete Research, 63(4), 297-310. https://doi.org/10.1680/macr.9.00170
- Ellingwood, B. R., Smilowitz, R., Dusenberry, D. O., Duthinh, D., Lew, H. S., & Carino, N. J. (2007). Best practices for reducing the potential for progressive collapse in buildings, Report No. NISTIR 7396, National Institute of Standards for Technology.
- General Services Administration. (2003). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington, DC: General Services Administration.
- Harajli, M. H. (1993). Strengthening of concrete beams by external prestressing. PCI Journal, 38(6), 76-88.
- ICC. (2009). International building code. Falls Church, VA: International Code Council.
- Kang, S. B., Tan, K. H., & Yang, E. H. (2015). Progressive collapse resistance of precast beam-column sub-assemblages with engineered cementitious composites. Engineering Structures, 98(1), 186-200. https://doi.org/10.1016/j.engstruct.2015.04.034
- Khandelwal, K., & El-Tawil, S. (2005). Progressive collapse of moment resisting steel frame buildings, Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium, New York, NY.
- Kim, J., & An, D. (2009). Evaluation of progressive collapse potential of steel moment frames considering catenary action. The Structural Design of Tall and Special Buildings, 18(4), 455-465. https://doi.org/10.1002/tal.448
- Milner, D., Gran, J., Lawver, D.,Vaughan, D.,Vanadit-Ellis,W.,& Levine, H. (2007). FLEX analysis and scaled testing for prediction of progressive collapse, first international workshop on performance, protection & strengthening of structures under extreme loading (PROTECT 2007). Canada: Whistler.
- Powell, G. (2005). Progressive collapse: Case studies using nonlinear analysis: Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium, New York, NY.
- Qian, K., & Li, B. (2012). Dynamic performance of RC beamcolumn substructures under the scenario of the loss of a corner column-experimental results. Engineering Structures, 42, 154-167. https://doi.org/10.1016/j.engstruct.2012.04.016
- Qian, K., & Li, B. (2013). Performance of three-dimensional reinforced concrete beam-column substructures under loss of a corner column scenario. ASCE Journal of Structural Engineering, 139(4), 584-594. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000630
- Qian, K., Li, B., & Ma, J. X. (2015). Load carrying mechanism to resist progressive collapse of RC buildings. ASCE Journal of Structural Engineering, 141(2), 04014107. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001046
- Ren, W., Sneed, L. H., Gai, Y., & Kang, X. (2015). Test results and nonlinear analysis of RC T-beams strengthened by bonded steel plates. International Journal of Concrete Structures and Materials, 9(2), 133-143. https://doi.org/10.1007/s40069-015-0098-3
- Sasani, M., & Kropelnicki, J. (2008). Progressive collapse analysis of an RC structure. The Structural Design of Tall and Special Buildings, 17(4), 757-771. https://doi.org/10.1002/tal.375
- Shin, K.-J., Lee, S.-H., & Kang, T. H.-K. (2013). External posttensioning of reinforced concrete beams using a V-shaped steel rod system. ASCE Journal of Structural Engineering, 140(3), 04013067.
- Song, B. I., & Sezen, H. (2013). Experimental and analytical progressive collapse assessment of a steel frame building. Engineering Structures, 56, 664-672. https://doi.org/10.1016/j.engstruct.2013.05.050
- Tsai, M. H., & Lin, B. H. (2008). Investigation of progressive collapse resistance and inelastic response for an earthquake-resistant RC building subjected to column failure. Engineering Structures, 30(12), 3619-3628. https://doi.org/10.1016/j.engstruct.2008.05.031
- Yi, W. J., He, Q. F., Xiao, Y., & Kunnath, S. K. (2008). Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Structural Journal, 105(4), 433-439.
- Yu, J., & Tan, K. H. (2013). Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures, 55, 90-106. https://doi.org/10.1016/j.engstruct.2011.08.040
Cited by
- Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained vol.10, pp.2, 2015, https://doi.org/10.1007/s40069-016-0134-y
- Progressive Collapse of Exterior Reinforced Concrete Beam-Column Sub-assemblages: Considering the Effects of a Transverse Frame vol.10, pp.4, 2016, https://doi.org/10.1007/s40069-016-0167-2
- Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components vol.11, pp.2, 2015, https://doi.org/10.1007/s40069-017-0190-y
- Development of a Shear Strength Equation for Beam-Column Connections in Reinforced Concrete and Steel Composite Systems vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0199-2
- Analytical Study of Force–Displacement Behavior and Ductility of Self-centering Segmental Concrete Columns vol.11, pp.3, 2015, https://doi.org/10.1007/s40069-017-0209-4
- Strengthening of Precast RC Frame to Mitigate Progressive Collapse by Externally Bonded CFRP Sheets Anchored with HFRP Anchors vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/8098242
- Progressive Collapse Resistance of Posttensioned Concrete Beam-Column Subassemblages with Unbonded Posttensioning Strands vol.144, pp.1, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0001940
- Assessment of Delay Factors for Structural Frameworks in Free-form Tall Buildings Using the FMEA vol.13, pp.1, 2015, https://doi.org/10.1186/s40069-018-0309-9
- Factors influencing the progressive collapse resistance of RC frame structures vol.27, pp.None, 2015, https://doi.org/10.1016/j.jobe.2019.100986
- Improving Progressive Collapse Resistance of RC Beam-Column Subassemblages Using External Steel Cables vol.34, pp.1, 2015, https://doi.org/10.1061/(asce)cf.1943-5509.0001360
- Effects of High-Strength Concrete on Progressive Collapse Resistance of Reinforced Concrete Frame vol.146, pp.6, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0002628
- Effects of infilled wall opening on load resisting capacity of RC frames to mitigate progressive collapse risk vol.223, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2020.111196
- Prediction of Catenary Action Capacity of RC Beam-Column Substructures under a Missing Column Scenario Using Evolutionary Algorithm vol.25, pp.3, 2015, https://doi.org/10.1007/s12205-021-0431-0
- Numerical investigation on load transfer mechanism of bonded post-tensioned concrete beam-column substructures against progressive collapse vol.24, pp.8, 2015, https://doi.org/10.1177/1369433220981655
- Interaction between infill walls and reinforced concrete frames after column removal vol.174, pp.7, 2021, https://doi.org/10.1680/jstbu.18.00218
- Experimental study on a novel method to improve progressive collapse resistance of RC frames using locally debonded rebars vol.41, pp.None, 2015, https://doi.org/10.1016/j.jobe.2021.102428
- Numerical investigation on compressive arch action of prestressed concrete beam-column assemblies against progressive collapse vol.44, pp.None, 2015, https://doi.org/10.1016/j.jobe.2021.102991
- Experimental Studies on Progressive Collapse Behavior of RC Frame Structures: Advances and Future Needs vol.15, pp.1, 2015, https://doi.org/10.1186/s40069-021-00469-6