Acknowledgement
Grant : Development of Smart Prestressing and Monitoring Technologies for Prestressed Concrete Bridges
Supported by : Korea Institute of Civil Engineering and Building Technology
References
- ACI Committee 318. (2008). Building code requirements for structural concrete (ACI 318-08). Farmington Hills, MI, US: American Concrete Institute (ACI).
- ACI Committee 318. (2014). Building code requirements for structural concrete (ACI 318-14). Farmington Hills, MI, US: American Concrete Institute (ACI).
- American Association of State Highway and Transportation Officials (AASHTO). (2002). Standard specifications for highway bridges (17th ed.). Washington, D.C., US: AASHTO.
- American Association of State Highway and Transportation Officials (AASHTO). (2014). AASHTO LRFD bridge design specifications (7th ed.). Washington, D.C., US: AASHTO.
- American Society for Testing and Materials (ASTM). (2012). Standard specification for steel strand, uncoated sevenwire for prestressed concrete (ASTM A416/A416M-12a). West Conshohocken, PA, US: ASTM.
- British Standards Institution (BSI). (1997). Structural use of concrete (BS 8110). London, UK: BSI.
- Canadian Standards Association (CSA). (2006). Canadian highway bridge design code, CAN/CSA-S6 (10th ed.). Mississauga, ON, Canada: CSA.
- Cho, K. H., Kim, S. T., Park, S. Y., & Park, Y. H. (2013). Computation of the strand resistance using the core wire strain measurement. Engineering, 5, 850-855. https://doi.org/10.4236/eng.2013.511103
- Cho, K. H., Park, S. Y., Cho, J. R., Kim, S. T., & Park, Y. H. (2015). Estimation of prestress force distribution in the multi-strand system of prestressed concrete structures. Sensors, 15, 14079-14092. https://doi.org/10.3390/s150614079
- Euro-International Committee for Concrete (CEB). (1993). CEB-FIP model code. Lausanne, Switzerland: Thomas Telford Services Ltd.
- European Committee for Standardization (CEN). (2002). Design of concrete structures (Eurocode 2). Brussels, Belgium: CEN.
- Gupta, P. R. (2005). Rational determination of friction losses in post-tensioned construction (pp. 129-144). SP-231, American Concrete Institute (ACI).
- Jang, I. Y., & Yun, Y. W. (2009). Study on stress transfer property for embedded FBG strain sensors in concrete monitoring. International Journal of Concrete Structures and Materials, 3(1), 33-37. https://doi.org/10.4334/IJCSM.2009.3.1.033
- Japan Road Association (JRA). (2012). Specifications for highway bridges-Part III. Concrete bridges. Tokyo, Japan: JRA.
- Japan Society of Civil Engineers (JSCE). (2007). Standard specifications for concrete structures-design. Tokyo, Japan: JSCE.
- Jeon, S. J., Park, J. C., Park, I. K., & Shim, B. (2009). Estimation of friction coefficients based on field data. Journal of the Korean Society of Civil Engineers, 29(5A), 487-494.
- Jeung, B. K., Han, K. B., & Park, S. K. (2000). An experimental study on the frictional loss of stress in the prestressing tendons. Journal of the Korean Society of Civil Engineers, 20(5-A), 797-804.
- Kim, S. H. (2015). An experimental study on measurement of friction coefficient using smart strand. Master's thesis, Ajou University, Suwon-si, Korea.
- Kim, J. M., Kim, H. W., Park, Y. H., Yang, I. H., & Kim, Y. S. (2012). FBG sensors encapsulated into 7-wire steel strand for tension monitoring of a prestressing tendon. Advances in Structural Engineering, 15(6), 907-917. https://doi.org/10.1260/1369-4332.15.6.907
- Kim, S. T., Park, Y. H., Park, S. Y., Cho, K. H., & Cho, J. R. (2015). A sensor-type PC strand with an embedded FBG sensor for monitoring prestress forces. Sensors, 15, 1060-1070. https://doi.org/10.3390/s150101060
- Kitani, T., & Shimizu, A. (2009). Friction coefficient measurement test on 13MN class tendon of PC strands for prestressed concrete containment vessel (PCCV). In: Proceedings of 20th international conference on structural mechanics in reactor technology (SMiRT 20), Paper 1825.
- Korea Concrete Institute (KCI). (2012). Structural concrete design code. Seoul, Korea: KCI.
- Korea Institute of Civil Engineering and Building Technology (KICT). (2013). Development of smart prestressing and monitoring technologies for prestressed concrete bridges, KICT 2013-167. Goyang-si, Korea: KICT.
- Korea Institute of Civil Engineering and Building Technology (KICT). (2014). Development of smart prestressing and monitoring technologies for prestressed concrete bridges, KICT 2014-171. Goyang-si, Korea: KICT.
- Korea Road and Transportation Association (KRTA). (2010). Design code for highway bridges. Seoul, Korea: KRTA.
- Korean Agency for Technology and Standards (KATS). (2011). Uncoated stress-relieved steel wires and strands for prestressed concrete (KS D 7002). Seoul, Korea: Korean Standards Association (KSA).
- Kreyszig, E. (2011). Advanced engineering mathematics (10th ed.). Hoboken, NJ, US: Wiley.
- Moon, J. K., & Lee, J. H. (1997). A study on the determination of prestressing force considering frictional loss in PS concrete structures. Journal of the Korean Society of Civil Engineers, 17(I-1), 89-99.
- Nellen, P. M., Frank, A., Broennimann, R., Meier, U., & Sennhauser, U. J. (1999). Fiber optical Bragg grating sensors embedded in CFRP wires. SPIE Proceedings, 3670, 440-449.
- Nilson, A. H. (1987). Design of prestressed concrete (2nd ed.). Hoboken, NJ, US: Wiley.
- Park, Y. H., & Gil, H. B. (2004). An error analysis of the friction assessment method for PS tensioning. In: Proceedings of Korean Society of Civil Engineers (KSCE) conference, pp. 106-111.
- Park, Y. H., & Kang, H. T. (2003). A criterion for application of friction assessment methods in PS tensioning management. In: Proceedings of Korean Society of Civil Engineers (KSCE) conference, pp. 594-599.
- Post-Tensioning Institute (PTI). (2006). Post-tensioning manual (6th ed.). Phoenix, AZ, US: PTI.
- Precast/Prestressed Concrete Institute (PCI). (2011). Bridge design manual (3rd ed.). Chicago, IL, US: PCI.
- State of California Department of Transportation (Caltrans) Engineering Services. (2005). Prestress manual. Sacramento, CA, US: Caltrans.
- The International Federation for Structural Concrete (fib). (2013). fib model code for concrete structures 2010. Lausanne, Switzerland: fib.
- Xuan, F. Z., Tang, H., & Tu, S. T. (2009). In situ monitoring on prestress losses in the reinforced structure with fiber-optic sensors. Measurement, 42, 107-111. https://doi.org/10.1016/j.measurement.2008.04.011
- Zhou, Z., He, J., Chen, G., & Ou, J. (2009). A smart steel strand for the evaluation of prestress loss distribution in posttensioned concrete structures. Journal of Intelligent Material Systems and Structures, 20, 1901-1912. https://doi.org/10.1177/1045389X09347021
Cited by
- Balanced Ratio of Concrete Beams Internally Prestressed with Unbonded CFRP Tendons vol.11, pp.1, 2017, https://doi.org/10.1007/s40069-016-0171-6
- Pore Structure of Calcium Sulfoaluminate Paste and Durability of Concrete in Freeze-Thaw Environment vol.11, pp.1, 2015, https://doi.org/10.1007/s40069-016-0174-3
- Modeling of Bond Stress–Slip Relationships of a Strand in Concrete during Steam Curing vol.11, pp.3, 2015, https://doi.org/10.1007/s40069-017-0210-y
- Test Error Sensitivity for Methods of Testing Prestressed Friction Loss vol.23, pp.2, 2015, https://doi.org/10.1061/(asce)be.1943-5592.0001191
- Friction Characteristics of Post-Tensioned Tendons of Full-Scale Structures Based on Site Tests vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/5916738
- Long-Term Characteristics of Prestressing Force in Post-Tensioned Structures Measured Using Smart Strands vol.10, pp.12, 2020, https://doi.org/10.3390/app10124084