DOI QR코드

DOI QR Code

Physical and Mechanical Properties of Cementitious Specimens Exposed to an Electrochemically Derived Accelerated Leaching of Calcium

  • Babaahmadi, Arezou (Division of Building Technology (Building Materials), Chalmers University of Technology) ;
  • Tang, Luping (Division of Building Technology (Building Materials), Chalmers University of Technology) ;
  • Abbas, Zareen (Department of Chemistry, University of Gothenburg) ;
  • Martensson, Per (Division of Low and Intermediate Level Nuclear Waste, Swedish Nuclear Fuel and Waste Management Company)
  • Received : 2014.10.28
  • Accepted : 2015.08.05
  • Published : 2015.09.30

Abstract

Simulating natural leaching process for cementitious materials is essential to perform long-term safety assessments of repositories for nuclear waste. However, the current test methods in literature are time consuming, limited to crushed material and often produce small size samples which are not suitable for further testing. This paper presents the results from the study of the physical (gas permeability as well as chloride diffusion coefficient) and mechanical properties (tensile and compressive strength and elastic modulus) of solid cementitious specimens which have been depleted in calcium by the use of a newly developed method for accelerated calcium leaching of solid specimens of flexible size. The results show that up to 4 times increase in capillary water absorption, 10 times higher gas permeability and at least 3 times higher chloride diffusion rate, is expected due to complete leaching of the Portlandite. This coincides with a 70 % decrease in mechanical strength and more than 40 % decrease in elastic modulus.

Keywords

Acknowledgement

Supported by : Swedish Nuclear Fuel and Waste Management Company (SKB)

References

  1. Adenot, F., & Buil, M. (1992). Modelling of the corrosion of the cement paste by deionized water. Cement and Concrete Research, 22, 489-496. doi:10.1016/0008-8846(92)90092-a.
  2. ASTM C39/C39M-14a, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
  3. ASTM C496/C496M-11, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
  4. Babaahmadi, A., Tang, L., Abbas, Z., Zack, T., & Martensson, P. (2015). Development of an electro-chemical accelerated ageing method for leaching of calcium from cementitious materials. Materials and Structures. doi:10.1617/s11527-015-0531-8.
  5. Berner, U. R. (1992). Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Management, 12, 201-219. doi:10.1016/0956-053x(92)90049-o.
  6. Carde, C., Escadeillas, G., & Francois, R. (1997). Use of ammonium nitrate solution to simulate and accelerate the leaching of cement pastes due to deionized water. Magazine of Concrete Research, 49, 295-301. https://doi.org/10.1680/macr.1997.49.181.295
  7. Carde, C., & Francois, R. (1997). Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties. Cement and Concrete Research, 27, 539-550. doi:10.1016/s0008-8846(97)00042-2.
  8. Carde, C., Francois, R., & Torrenti, J.-M. (1996). Leaching of both calcium hydroxide and C-S-H from cement paste: Modeling the mechanical behavior. Cement and Concrete Research, 26, 1257-1268. doi:10.1016/0008-8846(96)00095-6.
  9. Choi, Y. S., & Yang, E. I. (2013). Effect of calcium leaching on the pore structure, strength, and chloride penetration resistance in concrete specimens. Nuclear Engineering and Design, 259, 126-136. doi:10.1016/j.nucengdes.2013.02.049.
  10. Emborg, M., Jonasson, J. E., & Knutsson, S. (2007) Long-term stability due to freezing and thawing of concrete and bentonite at the disposal of low and intermediate level nuclear waste in SFR 1 (in Swedish) vol. R-07-60. SKB Technical Report R-07-60, Swedish Nuclear and Waste Management Company
  11. EN 933-1 Tests for geometrical properties of aggregates.
  12. Faucon, P., Adenot, F., Jacquinot, J. F., Petit, J. C., Cabrillac, R., & Jorda, M. (1998). Long-term behaviour of cement pastes used for nuclear waste disposal: Review of physicochemical mechanisms of water degradation. Cement and Concrete Research, 28, 847-857. doi:10.1016/s0008-8846(98)00053-2.
  13. Faucon, P., Le Bescop, P., Adenot, F., Bonville, P., Jacquinot, J. F., Pineau, F., & Felix, B. (1996). Leaching of cement: Study of the surface layer. Cement and Concrete Research, 26, 1707-1715. doi:10.1016/S0008-8846(96)00157-3.
  14. Gustafson, G., Hagstrom, M., & Abbas, Z. (2008). Bestandighet av cementinjektering
  15. Haga, K., Sutou, S., Hironaga, M., Tanaka, S., & Nagasaki, S. (2005). Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste. Cement and Concrete Research, 35, 1764-1775. doi:10.1016/j.cemconres.2004.06.034.
  16. Heukamp, F. H., Ulm, F. J., & Germaine, J. T. (2001). Mechanical properties of calcium-leached cement pastes: Triaxial stress states and the influence of the pore pressures. Cement and Concrete Research, 31, 767-774. https://doi.org/10.1016/S0008-8846(01)00472-0
  17. Hinsenveld, M. (1992). A shrinkage core model as a fundamental representation of leaching mechanism in cement stabilized waste. Doctoral thesis, University of Cincinnati, Cincinnati, OH.
  18. Hoglund, L.-O. (2001). Project SAFE: Modeling of long-term concrete degradation processes in the Swedish SFR repository vol R-01-08. SKB Report, Svensk Karnbranslehantering AB.
  19. Lagerblad, B. (2001). Leaching performance of concrete based on studies of sample from old concrete constructions, TR-01-27. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management.
  20. Langton, C., & Kosson, D. (2009). Review of mechanistic understanding and modeling and uncertainty analysis methods for predicting cementitious barriers performance. doi:10.2172/974326
  21. Mainguy, M., Tognazzi, C., Torrenti, J.-M., & Adenot, F. (2000). Modelling of leaching in pure cement paste and mortar. Cement and Concrete Research, 30, 83-90. doi:10.1016/S0008-8846(99)00208-2.
  22. Maltais, Y., Samson, E., & Marchand, J. (2004). Predicting the durability of Portland cement systems in aggressive environments-Laboratory validation. Cement and Concrete Research, 34, 1579-1589. doi:10.1016/j.cemconres.2004.03.029.
  23. Marinoni, N., Pavese, A., Voltolini, M., & Merlini, M. (2008). Long-term leaching test in concretes: An X-ray powder diffraction study. Cement & Concrete Composites, 30, 700-705. doi:10.1016/j.cemconcomp.2008.05.004.
  24. Morga, M., & Marano, G. C. (2015). Chloride penetration in circular concrete columns. International Journal of Concrete Structures and Materials, 9, 173-183. doi:10.1007/s40069-014-0095-y.
  25. Nguyen, V. H., Colina, H., Torrenti, J. M., Boulay, C., & Nedjar, B. (2007). Chemo-mechanical coupling behaviour of leached concrete: Part I: Experimental results. Nuclear Engineering and Design, 237, 2083-2089. doi:10.1016/j.nucengdes.2007.02.013.
  26. NT BUILD 492. (1999). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from nonsteady-state migration experiments.
  27. Park, S., & Choi, Y. (2012). Influence of curing-form material on the chloride penetration of off-shore concrete. International Journal of Concrete Structures and Materials, 6, 251-256. doi:10.1007/s40069-012-0026-8.
  28. Peyronnard, O., Benzaazoua, M., Blanc, D., & Moszkowicz, P. (2009). Study of mineralogy and leaching behavior of stabilized/solidified sludge using differential acid neutralization analysis: Part I: Experimental study. Cement and Concrete Research, 39, 600-609. doi:10.1016/j.cemconres.cemconres.2009.03.016.
  29. Pham, S., & Prince, W. (2014). Effects of carbonation on the microstructure of cement materials: influence of measuring methods and of types of cement. International Journal of Concrete Structures and Materials, 8, 327-333. doi:10.1007/s40069-014-0079-y.
  30. Pritzl, M., Tabatabai, H., & Ghorbanpoor, A. (2014). Laboratory evaluation of select methods of corrosion prevention in reinforced concrete bridges. International Journal of Concrete Structures and Materials, 8, 201-212. doi:10.1007/s40069-014-0074-3.
  31. Reardon, E. J. (1992). Problems and approaches to the prediction of the chemical composition in cement/water systems. Waste Management, 12, 221-239. doi:10.1016/0956-053x(92)90050-s.
  32. Revertegat, E., Richet, C., & Gegout, P. (1992). Effect of pH on the durability of cement pastes. Cement and Concrete Research, 22, 259-272. doi:10.1016/0008-8846(92)90064-3.
  33. Ryu, J.-S., Otsuki, N., & Minagawa, H. (2002). Long-term forecast of Ca leaching from mortar and associated degeneration. Cement and Concrete Research, 32, 1539-1544. doi:10.1016/s0008-8846(02)00830-x.
  34. Saito, H., & Deguchi, A. (2000). Leaching tests on different mortars using accelerated electrochemical method. Cement and Concrete Research, 30, 1815-1825. doi:10.1016/S0008-8846(00)00377-X.
  35. Saito, H., Nakane, S., Ikari, S., & Fujiwara, A. (1992). Preliminary experimental study on the deterioration of cementitious materials by an acceleration method. Nuclear Engineering and Design, 138, 151-155. doi:10.1016/0029-5493(92)90290-c.
  36. Sellier, A., Buffo-Lacarriere, L., Gonnouni, M. E., & Bourbon, X. (2011). Behavior of HPC nuclear waste disposal structures in leaching environment. Nuclear Engineering and Design, 241, 402-414. doi:10.1016/j.nucengdes.2010.11.002.
  37. Tang, L. (1996). Electrically accelerated methods for determining chloride diffusivity in concrete-Current development. Magazine of Concrete Research, 48, 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  38. Tragardh, J., & Lagerblad, B. (1998). Leaching of 90-year old concrete in contact with stagnant water, TR 98-11. Stockholm, Sweden: Swedish Nuclear fuel and Waste.
  39. Torrent, R. (2007). Non-destructive evaluation of the penetrability and thickness of the concrete cover-State-of-the-Art Report of RILEM Technical Committee 189-NEC vol rep040.
  40. Ulm, F.-J., Lemarchand, E., & Heukamp, F. H. (2003). Elements of chemomechanics of calcium leaching of cementbased materials at different scales. Engineering Fracture Mechanics, 70, 871-889. doi:10.1016/s0013-7944(02)00155-8.
  41. Wittmann, F. H. (1997). Corrosion of cement-based materials under the influence of an electric field. Materials Science Forum, 247, 107-126. doi:10.4028/www.scientific.net/MSF.247.107.
  42. Zhang, Q., & Ye, G. (2012). Dehydration kinetics of Portland cement paste at high temperature J Therm Anal Calorim, 110, 153-158. doi:10.1007/s10973-012-2303-9.

Cited by

  1. Effects of calcium leaching on the physical and mechanical properties of aerial lime-cement mortars vol.17, pp.3, 2015, https://doi.org/10.1108/jedt-11-2018-0199
  2. Modelling Concrete Degradation by Coupled Non-linear Processes vol.19, pp.10, 2015, https://doi.org/10.3151/jact.19.1075