References
- Abdul-Wahab, H. M. (1989). Strength of reinforced concrete corbels with fibers. ACI Structural Journal, 86(1), 60-66.
- Alameer, M. (2004). Effects of fibres and headed bars on the response of concrete corbels. M SC thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada.
- Ali, M., & White, R. (2001). Consideration of compression stress bulging and strut degradation in truss modeling of ductile and brittle corbels. Engineering Structures, 23(3), 240-249. https://doi.org/10.1016/S0141-0296(00)00040-7
- American Concrete Institute. (2011). Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11). Farmington Hills, MI: ACI.
- Australian code AS 3600. (2009). Australian Standard for Concrete Structures (p. 213). North Sydney, Australia: Standards Australia.
- Bourget, M., Delmas, Y., & Toutlememonde, F. (2001). Experimental study of the behaviour of reinforced highstrength concrete short corbels. Materials and Structures, 34(3), 155-162. https://doi.org/10.1007/BF02480506
- British Standards Institution. (2004). Eurocode 2: Design of concrete structures-Part 1-1: General rules and rules for buildings. London, UK: British Standards Institution.
- Campione, G., La Mendola, L., & Mangiavillano, M. L. (2007). Steel fiber-reinforced concrete corbels: Experimental behavior and shear strength prediction. ACI Structural Journal, 104(5), 570-579.
- Chakrabarti, P. R., Farahi, D. J., & Kashou, S. I. (1989). Reinforced and precompressed concrete corbels-an experimental study. ACI Structural Journal, 86(4), 132-142.
- Clottey, C. (1977). Performance of lightweight concrete corbels subjected to static and repeated loads. PhD thesis, Oklahoma State University, Ann Arbor, MI, pp. 127-127.
- CSA Committee A23.3. (2004). Design of concrete structures. Mississauga, Canada: Canadian Standard Association 232.
- Fattuhi, N. (1987). SFRC corbel tests. ACI Structural Journal, 84(2), 119-123.
- Fattuhi, N. (1990). Strength of SFRC corbels subjected to vertical load. Journal of Structural Engineering, 116(3), 701-718. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(701)
- Fattuhi, N. (1994). Reinforced corbels made with plain and fibrous concretes. ACI Structural Journal, 91(5), 530-536.
- Foster, S. J., Powell, R. E., & Selim, H. S. (1996). Performance of high-strength concrete corbels. ACI Structural Journal, 93(5), 555-563.
- He, Z.-Q., Liu, Z., & Ma, Z. J. (2012). Investigation of loadtransfer mechanisms in deep beams and corbels. ACI Structural Journal, 109(4), 467-476.
- Hermansen, B. R., & Cowan, J. (1974). Modified shear-friction theory for bracket design. ACI Journal Proceedings, 71(2), 55-60.
- Hwang, S.-J., Fang, W.-H., Lee, H.-J., & Yu, H.-W. (2001). Analytical model for predicting shear strength of squat walls. Journal of Structutral Engineering, ASCE, 127(1), 43-50. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(43)
- Hwang, S.-J., & Lee, H.-J. (1999). Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance. ACI Structural Journal, 96(5), 846-857.
- Hwang, S.-J., & Lee, H.-J. (2000). Analytical model for predicting shear strengths of interior reinforced concrete beamcolumn joints for seismic resistance. ACI Structural Journal, 97(1), 35-44.
- Hwang, S.-J., & Lee, H.-J. (2002). Strength prediction for discontinuity regions by softened strut-and-tie model. Journal of Structural Engineering, 128(12), 1519-1526. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1519)
- Hwang, S.-J., Lu, W.-Y., & Lee, H.-J. (2000a). Shear strength prediction for deep beams. ACI Structural Journal, 97(3), 367-376.
- Hwang, S.-J., Lu, W.-Y., & Lee, H.-J. (2000b). Shear strength prediction for reinforced concrete corbels. ACI Structural Journal, 97(4), 543-552.
- Kriz, L. B., & Raths, C. H. (1965). Connections in precast concrete structures-Strength of corbels. PCI Journal, 10(1), 16-61. https://doi.org/10.15554/pcij.02011965.16.61
- Lu, W.-Y., Lin, I.-J., & Hwang, S.-J. (2009). Shear strength of reinforced concrete corbels. Magazine of Concrete Research, 61(10), 807-813. https://doi.org/10.1680/macr.2008.61.10.807
- Lu, W. Y., Lin, I. J., Hwang, S. J., & Lin, Y. H. (2003). Shear strength of high-strength concrete dapped-end beams. Journal of the Chinese Institute of Engineers, 26(5), 671-680. https://doi.org/10.1080/02533839.2003.9670820
- MacGregor, J., & Wight, J. (2009). Reinforced concrete: Mechanics and design. Singapore: Prentice Hall and Pearson Education South Asia.
- Mattock, A. H. (1976). Design proposals for reinforced concrete corbels. PCI Journal, 21(3), 18-42. https://doi.org/10.15554/pcij.05011976.18.42
- NZS 3101. (2006). Part 1: Code of practice for the design of concrete structures and Part 2: Commentary on the design of concrete structures. Wellington, New Zealand: Standards Association of New Zealand.
- Park, J., & Kuchma, D. (2007). Strut-and-tie model analysis for strength prediction of deep beams. ACI Structural Journal, 104(6), 657-666.
- Paulay, T., & Priestley, M. (1992). Seismic design of reinforced concrete and masonry buildings. New York, NY: Wiley.
- Reineck, K. (2003). Examples for the design of structural concrete with strut-and-tie models. ACI International, SP-208, 128-141.
- Russo, G., Venir, R., Pauletta, M., & Somma, G. (2006). Reinforced concrete corbels-shear strength model and design formula. ACI Materials Journal, 103(1), 3-10.
- Schlaich, J., Schafer, K., & Jennewein, M. (1987). Toward a consistent design of structural concrete. PCI Journal, 32(3), 74-150. https://doi.org/10.15554/pcij.05011987.74.150
- Siao, W. B. (1994). Shear strength of short reinforced concrete walls, corbels, and deep beams. ACI Structural Journal, 91(2), 123-132.
- Solanki, H., & Sabnis, G. M. (1987). Reinforced concrete corbels-simplified. ACI Structural Journal, 84(5), 428-432.
- Vecchio, F. J. (1989). Nonlinear finite element analysis of reinforced concrete membranes. ACI Structural Journal, 86(1), 26-35.
- Vecchio, F. J., & Collins, M. P. (1993). Compression response of cracked reinforced concrete. Journal of Structural Engineering, 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
- Yang, K.-H., & Ashour, A. F. (2012). Shear capacity of reinforced concrete corbels using mechanism analysis. Proceedings of the ICE-Structures and Buildings, 165(3), 111-125. https://doi.org/10.1680/stbu.2012.165.3.111
- Yang, J., Lee, J., Yoon, Y., Cook, W., & Mitchell, D. (2012). Influence of steel fibers and headed bars on the serviceability of high-strength concrete corbels. Journal of Structural Engineering, 138(1), 123-129. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000427
- Yong, Y., & Balaguru, P. (1994). Behavior of reinforced highstrength-concrete corbels. Journal of Structural Engineering, 120(4), 1182-1201. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1182)
- Yong, Y., McCloskey, D. H., & Nawy, E. G. (1985). Reinforced corbels of high-strength concrete. London, UK: ACI Special Publication. 87.
Cited by
- Deformation-based Strut-and-Tie Model for reinforced concrete columns subject to lateral loading vol.17, pp.2, 2015, https://doi.org/10.12989/cac.2016.17.2.157
- Shear strength model for reinforced concrete corbels based on panel response vol.11, pp.4, 2015, https://doi.org/10.12989/eas.2016.11.4.723
- Deformation-based Strut-and-Tie Model for flexural members subject to transverse loading vol.18, pp.6, 2015, https://doi.org/10.12989/cac.2016.18.6.1213
- Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach vol.19, pp.5, 2015, https://doi.org/10.12989/cac.2017.19.5.589
- Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components vol.11, pp.2, 2015, https://doi.org/10.1007/s40069-017-0190-y
- Behavior of Short-Span Concrete Members Internally Reinforced with Glass Fiber-Reinforced Polymer Bars vol.22, pp.5, 2015, https://doi.org/10.1061/(asce)cc.1943-5614.0000877
- Structural Performance of RC Beams containing Tension-Only Nodes vol.12, pp.1, 2015, https://doi.org/10.1186/s40069-018-0228-9
- Experimental and Numerical Assessment of Reinforced Concrete Beams with Disturbed Depth vol.13, pp.1, 2019, https://doi.org/10.1186/s40069-019-0369-5
- Experimental analysis of a modified two-step corbel for precast concrete system vol.242, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2021.112585