DOI QR코드

DOI QR Code

Strength Prediction of Corbels Using Strut-and-Tie Model Analysis

  • Kassem, Wael (Division of Construction Engineering, College of Engineering at Al-Qunfudah, Umm Al-Qura University)
  • Received : 2014.06.02
  • Accepted : 2015.05.06
  • Published : 2015.06.30

Abstract

A strut-and-tie based method intended for determining the load-carrying capacity of reinforced concrete (RC) corbels is presented in this paper. In addition to the normal strut-and-tie force equilibrium requirements, the proposed model is based on secant stiffness formulation, incorporating strain compatibility and constitutive laws of cracked RC. The proposed method evaluates the load-carrying capacity as limited by the failure modes associated with nodal crushing, yielding of the longitudinal principal reinforcement, as well as crushing or splitting of the diagonal strut. Load-carrying capacity predictions obtained from the proposed analysis method are in a better agreement with corbel test results of a comprehensive database, comprising 455 test results, compiled from the available literature, than other existing models for corbels. This method is illustrated to provide more accurate estimates of behaviour and capacity than the shear-friction based approach implemented by the ACI 318-11, the strut-and-tie provisions in different codes (American, Australian, Canadian, Eurocode and New Zealand).

Keywords

References

  1. Abdul-Wahab, H. M. (1989). Strength of reinforced concrete corbels with fibers. ACI Structural Journal, 86(1), 60-66.
  2. Alameer, M. (2004). Effects of fibres and headed bars on the response of concrete corbels. M SC thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada.
  3. Ali, M., & White, R. (2001). Consideration of compression stress bulging and strut degradation in truss modeling of ductile and brittle corbels. Engineering Structures, 23(3), 240-249. https://doi.org/10.1016/S0141-0296(00)00040-7
  4. American Concrete Institute. (2011). Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11). Farmington Hills, MI: ACI.
  5. Australian code AS 3600. (2009). Australian Standard for Concrete Structures (p. 213). North Sydney, Australia: Standards Australia.
  6. Bourget, M., Delmas, Y., & Toutlememonde, F. (2001). Experimental study of the behaviour of reinforced highstrength concrete short corbels. Materials and Structures, 34(3), 155-162. https://doi.org/10.1007/BF02480506
  7. British Standards Institution. (2004). Eurocode 2: Design of concrete structures-Part 1-1: General rules and rules for buildings. London, UK: British Standards Institution.
  8. Campione, G., La Mendola, L., & Mangiavillano, M. L. (2007). Steel fiber-reinforced concrete corbels: Experimental behavior and shear strength prediction. ACI Structural Journal, 104(5), 570-579.
  9. Chakrabarti, P. R., Farahi, D. J., & Kashou, S. I. (1989). Reinforced and precompressed concrete corbels-an experimental study. ACI Structural Journal, 86(4), 132-142.
  10. Clottey, C. (1977). Performance of lightweight concrete corbels subjected to static and repeated loads. PhD thesis, Oklahoma State University, Ann Arbor, MI, pp. 127-127.
  11. CSA Committee A23.3. (2004). Design of concrete structures. Mississauga, Canada: Canadian Standard Association 232.
  12. Fattuhi, N. (1987). SFRC corbel tests. ACI Structural Journal, 84(2), 119-123.
  13. Fattuhi, N. (1990). Strength of SFRC corbels subjected to vertical load. Journal of Structural Engineering, 116(3), 701-718. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(701)
  14. Fattuhi, N. (1994). Reinforced corbels made with plain and fibrous concretes. ACI Structural Journal, 91(5), 530-536.
  15. Foster, S. J., Powell, R. E., & Selim, H. S. (1996). Performance of high-strength concrete corbels. ACI Structural Journal, 93(5), 555-563.
  16. He, Z.-Q., Liu, Z., & Ma, Z. J. (2012). Investigation of loadtransfer mechanisms in deep beams and corbels. ACI Structural Journal, 109(4), 467-476.
  17. Hermansen, B. R., & Cowan, J. (1974). Modified shear-friction theory for bracket design. ACI Journal Proceedings, 71(2), 55-60.
  18. Hwang, S.-J., Fang, W.-H., Lee, H.-J., & Yu, H.-W. (2001). Analytical model for predicting shear strength of squat walls. Journal of Structutral Engineering, ASCE, 127(1), 43-50. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(43)
  19. Hwang, S.-J., & Lee, H.-J. (1999). Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance. ACI Structural Journal, 96(5), 846-857.
  20. Hwang, S.-J., & Lee, H.-J. (2000). Analytical model for predicting shear strengths of interior reinforced concrete beamcolumn joints for seismic resistance. ACI Structural Journal, 97(1), 35-44.
  21. Hwang, S.-J., & Lee, H.-J. (2002). Strength prediction for discontinuity regions by softened strut-and-tie model. Journal of Structural Engineering, 128(12), 1519-1526. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1519)
  22. Hwang, S.-J., Lu, W.-Y., & Lee, H.-J. (2000a). Shear strength prediction for deep beams. ACI Structural Journal, 97(3), 367-376.
  23. Hwang, S.-J., Lu, W.-Y., & Lee, H.-J. (2000b). Shear strength prediction for reinforced concrete corbels. ACI Structural Journal, 97(4), 543-552.
  24. Kriz, L. B., & Raths, C. H. (1965). Connections in precast concrete structures-Strength of corbels. PCI Journal, 10(1), 16-61. https://doi.org/10.15554/pcij.02011965.16.61
  25. Lu, W.-Y., Lin, I.-J., & Hwang, S.-J. (2009). Shear strength of reinforced concrete corbels. Magazine of Concrete Research, 61(10), 807-813. https://doi.org/10.1680/macr.2008.61.10.807
  26. Lu, W. Y., Lin, I. J., Hwang, S. J., & Lin, Y. H. (2003). Shear strength of high-strength concrete dapped-end beams. Journal of the Chinese Institute of Engineers, 26(5), 671-680. https://doi.org/10.1080/02533839.2003.9670820
  27. MacGregor, J., & Wight, J. (2009). Reinforced concrete: Mechanics and design. Singapore: Prentice Hall and Pearson Education South Asia.
  28. Mattock, A. H. (1976). Design proposals for reinforced concrete corbels. PCI Journal, 21(3), 18-42. https://doi.org/10.15554/pcij.05011976.18.42
  29. NZS 3101. (2006). Part 1: Code of practice for the design of concrete structures and Part 2: Commentary on the design of concrete structures. Wellington, New Zealand: Standards Association of New Zealand.
  30. Park, J., & Kuchma, D. (2007). Strut-and-tie model analysis for strength prediction of deep beams. ACI Structural Journal, 104(6), 657-666.
  31. Paulay, T., & Priestley, M. (1992). Seismic design of reinforced concrete and masonry buildings. New York, NY: Wiley.
  32. Reineck, K. (2003). Examples for the design of structural concrete with strut-and-tie models. ACI International, SP-208, 128-141.
  33. Russo, G., Venir, R., Pauletta, M., & Somma, G. (2006). Reinforced concrete corbels-shear strength model and design formula. ACI Materials Journal, 103(1), 3-10.
  34. Schlaich, J., Schafer, K., & Jennewein, M. (1987). Toward a consistent design of structural concrete. PCI Journal, 32(3), 74-150. https://doi.org/10.15554/pcij.05011987.74.150
  35. Siao, W. B. (1994). Shear strength of short reinforced concrete walls, corbels, and deep beams. ACI Structural Journal, 91(2), 123-132.
  36. Solanki, H., & Sabnis, G. M. (1987). Reinforced concrete corbels-simplified. ACI Structural Journal, 84(5), 428-432.
  37. Vecchio, F. J. (1989). Nonlinear finite element analysis of reinforced concrete membranes. ACI Structural Journal, 86(1), 26-35.
  38. Vecchio, F. J., & Collins, M. P. (1993). Compression response of cracked reinforced concrete. Journal of Structural Engineering, 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  39. Yang, K.-H., & Ashour, A. F. (2012). Shear capacity of reinforced concrete corbels using mechanism analysis. Proceedings of the ICE-Structures and Buildings, 165(3), 111-125. https://doi.org/10.1680/stbu.2012.165.3.111
  40. Yang, J., Lee, J., Yoon, Y., Cook, W., & Mitchell, D. (2012). Influence of steel fibers and headed bars on the serviceability of high-strength concrete corbels. Journal of Structural Engineering, 138(1), 123-129. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000427
  41. Yong, Y., & Balaguru, P. (1994). Behavior of reinforced highstrength-concrete corbels. Journal of Structural Engineering, 120(4), 1182-1201. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1182)
  42. Yong, Y., McCloskey, D. H., & Nawy, E. G. (1985). Reinforced corbels of high-strength concrete. London, UK: ACI Special Publication. 87.

Cited by

  1. Deformation-based Strut-and-Tie Model for reinforced concrete columns subject to lateral loading vol.17, pp.2, 2015, https://doi.org/10.12989/cac.2016.17.2.157
  2. Shear strength model for reinforced concrete corbels based on panel response vol.11, pp.4, 2015, https://doi.org/10.12989/eas.2016.11.4.723
  3. Deformation-based Strut-and-Tie Model for flexural members subject to transverse loading vol.18, pp.6, 2015, https://doi.org/10.12989/cac.2016.18.6.1213
  4. Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach vol.19, pp.5, 2015, https://doi.org/10.12989/cac.2017.19.5.589
  5. Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components vol.11, pp.2, 2015, https://doi.org/10.1007/s40069-017-0190-y
  6. Behavior of Short-Span Concrete Members Internally Reinforced with Glass Fiber-Reinforced Polymer Bars vol.22, pp.5, 2015, https://doi.org/10.1061/(asce)cc.1943-5614.0000877
  7. Structural Performance of RC Beams containing Tension-Only Nodes vol.12, pp.1, 2015, https://doi.org/10.1186/s40069-018-0228-9
  8. Experimental and Numerical Assessment of Reinforced Concrete Beams with Disturbed Depth vol.13, pp.1, 2019, https://doi.org/10.1186/s40069-019-0369-5
  9. Experimental analysis of a modified two-step corbel for precast concrete system vol.242, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2021.112585