References
- Acker P. (2001). Micromechanical analysis of creep and shrinkage mechanisms. In F. J. Ulm, Z. P. Bazant, F. H. Wittmann (Eds.), Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, 6th international conference (pp. 15-26) Amsterdam, Netherlands: CONCREEP@MIT Elsevier.
- Alonso, C., & Fernandez, L. (2004). Dehydration and rehydration processes of cement paste exposed to high temperature environments. Journal of Materials Science, 39(9), 3015-3024. https://doi.org/10.1023/B:JMSC.0000025827.65956.18
- Baykal, M. (2000). Implementation of durability models for portland cement concrete into performance-based specifications. Austin, TX: University of Texas at Austin.
- Bjornstrom, J., Martinelli, A., Matic, A., Borjesson, L., & Panas, I. (2004). Accelerating effects of colloidal nanosilica for beneficial calcium-silicate-hydrate formation in cement. Chemical Physics Letters, 392(1-3), 242-248. https://doi.org/10.1016/j.cplett.2004.05.071
- Coenen, S., & Kruif, C. G. (1988). Synthesis and growth of colloidal silica particles. Journal of Colloid and Interface Science, 124(1), 104-110. https://doi.org/10.1016/0021-9797(88)90330-X
-
Flores, I., Sobolev K., Torres-Martinez L. M., Cuellar E. L., Valdez P. L., Zarazua E. (2010). Performances of cement systems with nano-
$SiO_2$ particles produced by using the sol-gel method. In Transportation Research Record: Journal of the Transportation Research Board, No. 2141 (pp. 10-14). Washington, DC: Transportation Research Board of the National Academies. - Gabrovsek, R., Vuk, T., & Kaucic, V. (2006). Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chimica Slovenica, 53(2), 159-165.
- Gaitero, J. J., Campillo, I., & Guerrero, A. (2008). Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cement and Concrete Research, 38(8-9), 1112-1118. https://doi.org/10.1016/j.cemconres.2008.03.021
- Gaitero, J. J., Zhu, W., & Campillo, I. (2009). Multi-scale study of calcium leaching in cement pastes with silica nanoparticles. Nanotechnology in construction 3, Berlin (pp. 193-198). Heidelberg, Germany: Springer.
- Gallucci, E., Zhang, X., & Scrivener, K. L. (2013). Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cement and Concrete Research, 53, 185-195. https://doi.org/10.1016/j.cemconres.2013.06.008
- He, X., & Shi, X. (2008). Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials. Transportation Research Record: Journal of the Transportation Research Board, 2070, 13-21. https://doi.org/10.3141/2070-03
-
Hou, P., Cheng, X., Qian, J., & Shah, S. P. (2014). Effects and mechanisms of surface treatment of hardened cement-based materials with colloidal nano-
$SiO_2$ and its precursor. Construction and Building Materials, 53, 66-73. https://doi.org/10.1016/j.conbuildmat.2013.11.062 - Jain, J., & Neithalath, N. (2009). Analysis of calcium leaching behavior of plain and modified cement pastes in pure water. Cement and Concrete Composite, 31(3), 176-185. https://doi.org/10.1016/j.cemconcomp.2009.01.003
-
Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-
$SiO_2$ . Cement and Concrete Research, 35(10), 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004 -
Jo, B., Kim, C., & Lim, J. (2007). Characteristics of cement mortar with nano-
$SiO_2$ particles. Construction and Building Materials, 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020 - Kong, D., Su, Y., Xi, D., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557-562. https://doi.org/10.1016/j.conbuildmat.2013.02.066
- Kontoleontos, F., Tsakiridis, P. E., Marinos, A., Kaloidas, V., & Katsioti, M. (2012). Influence of colloidal nano-silica on ultrafine cement hydration: Physicochemical and microstructural characterization. Construction and Building Materials, 35, 347-360. https://doi.org/10.1016/j.conbuildmat.2012.04.022
- Lam, L., Wong, Y. L., & Poon, C. S. (2000). Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cement and Concrete Research, 30(5), 747-756. https://doi.org/10.1016/S0008-8846(00)00213-1
- Lin, W. T., Huang, R., Chang, J. J., & Lee, C. L. (2009). Effect of silica fume on the permeability of fiber cement composites. Journal of the Chinese Institute of Engineers, 32(4), 531-541. https://doi.org/10.1080/02533839.2009.9671535
- Neville, A. M. (1981). Properties of concrete (3rd ed., pp. 257-279). London, UK: ELBS with Longman.
- Olsona, R. A., & Jennings, H. M. (2001). Estimation of C-S-H content in a blended cement paste using water adsorption. Cement and Concrete Research, 31(3), 351-356. https://doi.org/10.1016/S0008-8846(01)00454-9
- Pichler, B., Hellmich, C., Eberhardsteiner, J., Wasserbauer, J., Termkhajornkit, P., Barbarulo, R., & Chanvillard, G. (2013). Effect of gel-space ratio and microstructure on strength of hydrating cementitious materials: An engineering micromechanics approach. Cement and Concrete Research, 45, 55-68. https://doi.org/10.1016/j.cemconres.2012.10.019
- Powers, T. C., & Brownyard, T. L. (1948). Studies of the physical properties of hardened Portland cement paste. Research Laboratories of the Portland Cement Association Bulletin, 22, 101-992.
- Quercia, G., Spiesz, P., Husken, G., & Brouwers, H. J. H. (2014). SCC modification by use of amorphous nano-silica. Cement & Concrete Composites, 45, 69-81. https://doi.org/10.1016/j.cemconcomp.2013.09.001
- Ramachandran, V. S., Paroli, R. M., Beaudoin, J. J., & Delgado, A. H. (Eds.). (2003). Handbook of thermal analysis of construction materials. Norwich: Noyes Publications.
- Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete-A review. Construction and Building Materials, 24(11), 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
- Savas B. Z. (2000). Effects of microstructure on durability of concrete, Ph.D. thesis. Raleigh: North Carolina State University.
- Shi, X., Xie, N., Fortune, K., & Gong, J. (2012). Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials, 30, 125-138. https://doi.org/10.1016/j.conbuildmat.2011.12.038
- Singh, L. P., Bhattacharyya, S. K., & Ahalawat, S. (2012a). Preparation of size controlled silica nano particles and its functional role in cementitious system. Journal of Advanced Concrete Technology, 10(11), 345-352. https://doi.org/10.3151/jact.10.345
- Singh, L. P., Bhattacharyya, S. K., Mishra, G., & Ahalawat, S. (2012b). Reduction of calcium leaching in cement hydration process using nanomaterials. Materials Technology, 27(3), 233-238. https://doi.org/10.1179/1753555712Y.0000000005
- Singh, L. P., Karade, S. R., Bhattacharyya, S. K., & Ahalawat, S. (2013). Beneficial role of nano-silica in cement based materials-a review. Construction and Building Materials, 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052
- Tan, B., Lehmler, H. J., Vyas, S. M., Knuston, B. L., & Rankin, S. E. (2005). Controlling nanopore size and shape by fluorosurfactant templating of silica. Chemistry of Materials, 17(4), 916-925. https://doi.org/10.1021/cm048991t
- Taylor, H. F. W. (1997). Cement chemistry. London, UK: Thomas Telford.
- Toutanji, H., Delatte, N., & Aggoun, S. (2004). Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete. Cement and Concrete Research, 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017
- Venkatathri, N., & Nanjundan, S. (2009). Synthesis and characterization of a mesoporous silica microsphere from polystyrene. Materials Chemistry and Physics, 113(2-3), 933-936. https://doi.org/10.1016/j.matchemphys.2008.08.072
- Young, J. F., & Hansen, W. (1987). Volume relationships for C-S-H formation based on hydration stoichiometries. Materials Research Society, 85, 313.
Cited by
- Hydration Studies of Cementitious Material using Silica Nanoparticles vol.13, pp.7, 2015, https://doi.org/10.3151/jact.13.345
- Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag vol.9, pp.3, 2015, https://doi.org/10.1007/s40069-015-0104-9
- Creep Mechanisms of Calcium-Silicate-Hydrate: An Overview of Recent Advances and Challenges vol.9, pp.4, 2015, https://doi.org/10.1007/s40069-015-0114-7
- Quantification of hydration products in cementitious materials incorporating silica nanoparticles vol.10, pp.2, 2015, https://doi.org/10.1007/s11709-015-0315-9
- Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives vol.10, pp.1, 2015, https://doi.org/10.1007/s40069-015-0122-7
- The Effect of Curing Temperature on the Properties of Cement Pastes Modified with TiO 2 Nanoparticles vol.9, pp.11, 2015, https://doi.org/10.3390/ma9110952
- An Investigation into the Properties and Microstructure of Cement Mixtures Modified with Cellulose Nanocrystal vol.10, pp.5, 2015, https://doi.org/10.3390/ma10050498
- Effects of Calcium Carbonate Nanoparticles and Fly Ash on Mechanical and Permeability Properties of Concrete vol.7, pp.1, 2015, https://doi.org/10.1520/acem20180066
- Agglomeration and reactivity of nanoparticles of SiO2, TiO2, Al2O3, Fe2O3, and clays in cement pastes and effects on compressive stren vol.167, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2018.02.032
- Nanoparticles as concrete additives: Review and perspectives vol.175, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2018.04.214
- Pozzolanic activity of nanosized palm oil fuel ash: A comparative assessment with various fineness of palm oil fuel ash vol.220, pp.None, 2015, https://doi.org/10.1088/1755-1315/220/1/012061
- The effect of nano-SiO2 on concrete properties: a review vol.8, pp.1, 2015, https://doi.org/10.1515/ntrev-2019-0050
- The effect of nano-SiO2 on concrete properties: a review vol.8, pp.1, 2015, https://doi.org/10.1515/ntrev-2019-0050
- State-of-the-Art of Cellulose Nanocrystals and Optimal Method for their Dispersion for Construction-Related Applications vol.9, pp.3, 2015, https://doi.org/10.3390/app9030426
- Effects of Nanoparticles on the Antipullout Strength between the Reinforcement and Cement Mortar vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/8856647
- Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete vol.25, pp.1, 2015, https://doi.org/10.12989/sss.2020.25.1.097
- Mechanical Performance of Fiber Reinforced Cement Composites Including Fully-Recycled Plastic Fibers vol.9, pp.3, 2015, https://doi.org/10.3390/fib9030016
- Characterization and Analysis of the Carbonation Process of a Lime Mortar Obtained from Phosphogypsum Waste vol.18, pp.12, 2015, https://doi.org/10.3390/ijerph18126664
- Review on the correlation between mixing, microstructure and strength of cementitious products with nanoparticles vol.822, pp.1, 2015, https://doi.org/10.1088/1755-1315/822/1/012005
- A review on applications of sol-gel science in cement vol.291, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2021.123065
- Evaluation of Empirical Relation between Compressive and Flexural Strength of Concrete Partially Using Alccofine and Nano-Silica vol.1167, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/amr.1167.77
- Mechanical properties and microstructure of cured slurry under load: Synergistic effects of nano-silica and micron-silica vol.305, pp.None, 2015, https://doi.org/10.1016/j.matlet.2021.130833
- Experimental studies of sustainable concrete modified with colloidal nanosilica and metakaolin vol.7, pp.1, 2015, https://doi.org/10.1007/s41024-021-00157-8