References
- Arora, P., Popov, B. N., Haran, B., Ramasubramanian, M., Popova, S., & White, R. E. (1997). Corrosion initiation time of steel reinforcement in a chloride environment-A one dimensional solution. Corrosion Science, 39(4), 739-759. https://doi.org/10.1016/S0010-938X(96)00163-1
- Azad, A. K. (1998). Chloride diffusion in concrete and its impact on corrosion of reinforcement. In Proceedings of symposium on performance of concrete structures in the Arabian Gulf environment (pp. 262-273).
- Basheer, L., Kropp, J., & Cleland, D. J. (2002). Assessment of the durability of concrete from its permeation properties: A review. Construction and Building Materials, 15(2-3), 93-103. https://doi.org/10.1016/S0950-0618(00)00058-1
- Chatterji, S. (1995). On the applicability of the Fick’s second law to chloride ion migration through Portland cement concrete. Cement and Concrete Research, 25(2), 299-303. https://doi.org/10.1016/0008-8846(95)00013-5
- Collepardi, C. M., Marcialis, A., & Turriziani, R. (1972). Penetration of chloride ions into cement pastes and concrete. Journal of the American Ceramic Society, 55(10), 534-535. https://doi.org/10.1111/j.1151-2916.1972.tb13424.x
- Crank, J. (1975). The mathematics of diffusion (2d ed.). London, UK: Oxford Press.
- Do, J., Song, H., So, S., & Soh, Y. (2005). Comparison of deterministic calculation and fuzzy arithmetic for two prediction model equation of corrosion initiation. Journal of Asian Architecture and Building Engineering., 4(2), 447-454. https://doi.org/10.3130/jaabe.4.447
- Frier, C, & Sorensen, J. D. (2007). Stochastic analysis of the multi-dimensional effect of chloride ingress into reinforced concrete. In 10th international conference of applications of statistics and probability in civil engineering (pp. 135-136), Tokyo, Japan, 31 July-3 August 2007. London, UK: Marcel Dekker.
- Izquierdo, D., Alonso, C., Andrade, C., & Castellote, M. (2004). Potenziostatic determination of chloride threshold values for rebar depassivation. Experimental and Statistical Study, Electrochimica Acta, 49, 2731-2739. https://doi.org/10.1016/j.electacta.2004.01.034
- Kirkpatrick, T. J., Weyers, R. E., Sprinkel, M. M., & Anderson-Cook, C. M. (2002). Impact of specification changes on chloride-induced corrosion service life of bridge decks. Cement and Concrete Research, 32(8), 1189-1197. https://doi.org/10.1016/S0008-8846(02)00760-3
- Lin, S. H. (1990). Chloride diffusion in a porous concrete slab. Corrosion, 46, 964-967. https://doi.org/10.5006/1.3585052
- Marano, G. C., Quaranta, G., & Mezzina, M. (2008). Fuzzy Time-dependent reliability analysis of RC beams subject to pitting corrosion. Journal of Materials in Civil Engineering, 20(9), 578-587. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(578)
- Martin-Perez, B., Pantazopoulou, S. J., & Thomas, M. D. A. (2001). Numerical solution of mass transport equations in concrete structures. Computers & Structures, 79(13), 1251-1264. https://doi.org/10.1016/S0045-7949(01)00018-9
- Nogueira, C. G., & Leonel, E. D. (2013). Probabilistic models applied to safety assessment of reinforced concrete structures subjected to chloride ingress. Engineering Failure Analysis, 31, 76-89. https://doi.org/10.1016/j.engfailanal.2013.01.023
- Saassouh, B., & Lounis, Z. (2012). Probabilistic modelling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods. Cement & Concrete Composites, 34, 1082-1093. https://doi.org/10.1016/j.cemconcomp.2012.05.001
- Saetta,A.V.,Schrefler, B. A.,&Vitaliani,R. V. (1995). 2-Dmodel for carbonation and moisture/heat flow in porous materials. Cement and Concrete Research, 25(8), 1703-1712. https://doi.org/10.1016/0008-8846(95)00166-2
- Sobhani, J., & Ramezanianpour, A. A. (2011). Service life of the reinforced concrete bridge deck in corrosive environments: A soft computing system. Applied Soft Computing, 11, 3333-3346. https://doi.org/10.1016/j.asoc.2011.01.004
- Tang, L., & Joost, G. (2007). On the mathematics of timedependent apparent chloride diffusion coefficient in concrete. Cement and Concrete Research, 37, 589-595. https://doi.org/10.1016/j.cemconres.2007.01.006
- Tuutti, K. (1982). Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute, Stockholm, Sweden. Report No. CBI Research FO 4:82.
- Vu, K. A. T., & Stewart, M. G. (2000). Structural reliability of concrete bridges including improved chloride-induced corrosion models. Structural Safety, 22(4), 313-333. https://doi.org/10.1016/S0167-4730(00)00018-7
- Val, D. V., & Trapper, P. A. (2008). Probabilistic evaluation of initiation time of chloride-induced corrosion. Reliability Engineering and System Safety, 93(3), 364-372. https://doi.org/10.1016/j.ress.2006.12.010
Cited by
- Physical and Mechanical Properties of Cementitious Specimens Exposed to an Electrochemically Derived Accelerated Leaching of Calcium vol.9, pp.3, 2015, https://doi.org/10.1007/s40069-015-0108-5
- Effect of Wet Curing Duration on Long-Term Performance of Concrete in Tidal Zone of Marine Environment vol.9, pp.4, 2015, https://doi.org/10.1007/s40069-015-0118-3
- New experiment recipe for chloride penetration in concrete under water pressure vol.17, pp.2, 2015, https://doi.org/10.12989/cac.2016.17.2.189
- On Probability Distribution of Chloride Diffusion Coefficient for Recycled Aggregate Concrete vol.10, pp.1, 2015, https://doi.org/10.1007/s40069-015-0123-6
- An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0185-8
- Reliability of Reinforced Concrete Structures Subjected to Corrosion-Fatigue and Climate Change vol.12, pp.1, 2015, https://doi.org/10.1186/s40069-018-0235-x
- Prediction of Chloride Penetration Depth Rate and Diffusion Coefficient Rate of Concrete from Curing Condition Variations due to Climate Change Effect vol.13, pp.1, 2015, https://doi.org/10.1186/s40069-019-0333-4
- Calibration of boundary conditions correlated to the diffusivity of chloride ions: An accurate study for random diffusivity vol.126, pp.None, 2022, https://doi.org/10.1016/j.cemconcomp.2021.104346