References
- ASTM C 1012-95a. (1995). standard test method for length change of hydraulic-cement mortars exposed to a sulfate solution, American Society for Testing and Materials, PA.
- Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35, 1233-1246. https://doi.org/10.1016/j.cemconres.2004.09.002
- Bakhareva, T., Sanjayana, J. G., & Cheng, Y. B. (2002). Sulfate attack on alkali-activated slag concrete. Cement and Concrete Research, 32, 211-216. https://doi.org/10.1016/S0008-8846(01)00659-7
- Bondar, D. (2009). Alkali activation of Iranian natural pozzolans for producing geopolymer cement and concrete. A dissertation submitted to University of Sheffield in fulfilment of the requirements for the degree of Doctor of Philosophy, UK.
- Bondar, D., Lynsdale, C. J., Milestone, N. B., & Hassani, N. (2012). Oxygen and chloride permeability of alkali activated natural pozzolan concrete. ACI Materials, 109(1), 53-62.
- Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., & Ramezanianpour, A. A. (2011a). Effect of type, form and dosage of activators on strength of alkali-activated natural pozzolans. Cement and Concrete Composites, 33(2), 251-260. https://doi.org/10.1016/j.cemconcomp.2010.10.021
- Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., & Ramezanianpour, A. A. (2011b). Engineering properties of alkali-activated natural pozzolan concrete. ACI Materials, 108(1), 64-72.
- Chotetanorm, C., Chindaprasirt, P., Sata, V., Rukzon, S., & Sathonsaowaphak, A. (2013). High-calcium bottom ash geopolymer: Sorptivity, pore size, and resistance to sodium sulfate attack. Journal of Materials in Civil Engineering, 25(1), 105-111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000560
- Ezatian, F. (2002). Atlas of igneous rocks: Classification and nomenclatures. Ministry of Industries and Mines, Geological Survey of Iran (GSI) (in Farsi).
- Ganjian, E., & Pouya, H. S. (2005). Effect of magnesium and sulfate ions on durability of silica fume blended mixes exposed to the seawater tidal zone. Cement and Concrete Research, 35, 1332-1343. https://doi.org/10.1016/j.cemconres.2004.09.028
- Hakkinen, T. (1986) Properties of alkali activated slag concrete. VTT Research Notes, Technical Research Centre of Finland (VTT), Finland, No. 540.
- Hakkinen, T. (1987). Durability of alkali activated slag concrete. Nordic Concrete Research, 6, 81-94.
- Neville, A. M. (1995). Properties of concrete. Essex, UK: Pearson Educational Limited.
- Rangan, B. V. (2008). Fly ash-based geopolymer concrete, available at: http://www.yourbuilding.org/display/yb/Fly?Ash-Based?Geopolymer?Concrete. Accessed 2011.
- RILEM CPC-11.2. (1994) Absorption of water by concrete by capillarity QTC14-CPC, 1982, RILEM technical recommendations for the testing and use of construction materials, International Union of Testing and Research Laboratories for Materials and Structures, E and FN Spon, UK.
- Shi, C., Krivenko, P. V., & Roy, D. (2006). Alkali-activated cement and concretes. London, UK: Taylor & Francis.
- Swamy, R. N. (1998). Blended cement in construction. London, UK: Taylor and Francis.
- Turker, F., Akoz, F., Koral, S., & Yuzer, N. (1997). Effect of magnesium sulfate concentration on the sulfate resistance on mortars with and without silica fume. Cement and Concrete Research, 27, 205-214. https://doi.org/10.1016/S0008-8846(97)00009-4
- Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Applied Clay Science, 43, 218-223. https://doi.org/10.1016/j.clay.2008.09.003
Cited by
- An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar vol.6, pp.4, 2015, https://doi.org/10.4236/ojcm.2016.64013
- Effects of foreign substances in cement mortar mixing water vol.28, pp.3, 2015, https://doi.org/10.1680/jadcr.15.00069
- Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives vol.24, pp.5, 2015, https://doi.org/10.1007/s11356-016-8230-8
- Early strength and durability of metakaolin-based geopolymer concrete vol.69, pp.1, 2015, https://doi.org/10.1680/jmacr.16.00118
- Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete vol.11, pp.2, 2017, https://doi.org/10.1007/s40069-017-0195-6
- Effect of Scoria on Various Specific Aspects of Lightweight Concrete vol.11, pp.3, 2015, https://doi.org/10.1007/s40069-017-0204-9
- Mechanical and durability properties of fly ash and slag based geopolymer concrete vol.6, pp.4, 2015, https://doi.org/10.12989/acc.2018.6.4.345
- Durability of cement-sodium silicate grouts with a high water to binder ratio in marine environments vol.189, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2018.09.040
- Investigation of sulfates effects in perlite‐based geopolymer vol.20, pp.4, 2015, https://doi.org/10.1002/suco.201900039
- Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization vol.69, pp.335, 2019, https://doi.org/10.3989/mc.2019.06618
- Durability Properties of Alkali Activated Slag Composites: Short Overview vol.12, pp.4, 2015, https://doi.org/10.1007/s12633-019-00199-1
- Mechanical performance of FRP-confined geopolymer concrete under seawater attack vol.23, pp.6, 2015, https://doi.org/10.1177/1369433219886964
- Alkali-Activated Concrete Based on Natural Volcanic Pozzolan: Chemical Resistance to Sulfate Attack vol.32, pp.5, 2015, https://doi.org/10.1061/(asce)mt.1943-5533.0003161
- Effect of thermal treatment on the structural, electrical, and dielectric properties of volcanic scoria vol.31, pp.14, 2020, https://doi.org/10.1007/s10854-020-03720-0
- Volcanic Ash as a Sustainable Binder Material: An Extensive Review vol.14, pp.5, 2015, https://doi.org/10.3390/ma14051302
- Binary blended fly ash concrete with improved chemical resistance in natural and industrial environments vol.28, pp.22, 2015, https://doi.org/10.1007/s11356-021-12453-4