References
- S.U.S. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME International Mechanical Engineering Conference&Exposition, San Francisco, 1996, pp. 99-105.
- W. Duangthongsuk, S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp. Therm. Fluid Sci. 33 (2009) 706-714. https://doi.org/10.1016/j.expthermflusci.2009.01.005
- A.R. Sajadi, M.H. Kazemi, Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nano fluid in circular tube, Int. Commun. Heat Mass Transf 38 (2011) 1474-1478. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.007
- A.A. Abbasian Arani, J. Amani, Experimental study on the effect of TiO2-water nanofluid on heat transfer and pressure drop, Exp. Therm. Fluid Sci. 42 (2012) 107-115. https://doi.org/10.1016/j.expthermflusci.2012.04.017
- A.A. Abbasian Arani, J. Amani, Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2-water nanofluid, Exp. Therm. Fluid Sci. 44 (2013) 520-533. https://doi.org/10.1016/j.expthermflusci.2012.08.014
- D. Ciloglu, A. Bolukbasi, The quenching behavior of aqueous nanofluids around rods with high temperature, Nucl. Eng. Des. 241 (2011) 2519-2527. https://doi.org/10.1016/j.nucengdes.2011.04.023
- J. Barber, D. Brutin, L. Tadrist, A review on boiling heat transfer enhancement with nanofluids, Nanoscale Res. Lett. 6 (2011) 1-16.
- S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Study of pool boiling and critical heat flux enhancement in nanofluids, Bull. Polish Acad. Sci. 55 (2007) 211-216. https://doi.org/10.4064/ba55-3-3
- J. Buongiorno, L.W. Hu, S.J. Kim, R. Hannink, B. Truong, E. Forrest, Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps, Therm. Hydraulics 162 (2008) 80-91.
- M.M. El-Wakil, Nuclear Heat Transport, third ed., The American Nuclear Society, La Grange park, 1981.
- F.M. White, Fluid Mechanics, fourth ed., McGraw-Hill, New York, 1999.
- T. Sreenivasulu, B.V.S.S.S. Prasad, Flow and heat transfer characteristics in an annulus wrapped with a helical wire, Int. J. Therm. Sci. 48 (2009) 1377-1391. https://doi.org/10.1016/j.ijthermalsci.2008.11.023
- X.-Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci. 46 (2007) 1-19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
- O. Zikanov, Essential Computational Fluid Dynamics, Wiley Higher Education, University of Michigan-Dearborn, 2010.
- C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid Al2O3 thermal conductivity enhancement, Appl. Phys. Lett. 87 (2005) 153107. https://doi.org/10.1063/1.2093936
- Y. Abbassi, M. Talebi, Experimental investigation of TiO2/water nanofluid effects on heat transfer characteristics of a vertical annulus with non-uniform heat flux in nonradiation environment, Ann. Nucl. Energy 69 (2014) 7-13. https://doi.org/10.1016/j.anucene.2014.01.033
- W. Jens, P. Lottes, Analysis of Heat Transfer, Burnout, Pressure Drop and Density Date for High-pressure Water, Argonne National Lab, Lemont, 1951.
Cited by
- Experimental Investigation of Overall Heat Transfer Coefficient of Al2O3/Water-Mono Ethylene Glycol Nanofluids in an Automotive Radiator vol.46, pp.7, 2015, https://doi.org/10.1002/htj.21247
- Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source vol.49, pp.8, 2015, https://doi.org/10.1016/j.net.2017.08.015
- Numerical Investigation of Forced Convective Heat Transfer Characteristics of a Porous Channel Filled With -Water Nanofluid in the Presence of Heaters and Coolers vol.39, pp.11, 2015, https://doi.org/10.1080/01457632.2017.1357786
- Synthesis, characterisation and thermal conductivity of CuO - water based nanofluids with different dispersants vol.38, pp.5, 2015, https://doi.org/10.1080/02726351.2019.1574941
- Photothermal spectroscopy: A promising tool for nanofluids vol.128, pp.19, 2015, https://doi.org/10.1063/5.0024332
- Photothermal and Heat-Transfer Properties of Aqueous Detonation Nanodiamonds by Photothermal Microscopy and Transient Spectroscopy vol.125, pp.14, 2015, https://doi.org/10.1021/acs.jpcc.0c09329
- ANFIS modelling of effective thermal conductivity of ethylene glycol and water nanofluids for low temperature heat transfer application vol.24, pp.None, 2021, https://doi.org/10.1016/j.tsep.2021.100936
- ANSYS-CFX simulation of the SRBTL test loop core with nanofluid coolant vol.86, pp.6, 2015, https://doi.org/10.1515/kern-2020-0059