DOI QR코드

DOI QR Code

WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula

  • 정옥진 (한국교원대학교 제 3대학 환경교육과) ;
  • 문윤섭 (한국교원대학교 제 3대학 환경교육과)
  • Jung, Ok Jin (Department of Environmental Education, Korea National University of Education) ;
  • Moon, Yun Seob (Department of Environmental Education, Korea National University of Education)
  • 투고 : 2015.01.20
  • 심사 : 2015.02.26
  • 발행 : 2015.02.28

초록

2010년 11월 11-13일 한반도에 영향을 미쳤던 황사에 대해 WRF-Chem 모델을 이용하여 시뮬레이션 하였다. WRF-Chem 모델에서 미세먼지의 인위적 배출량은 RETRO 전구 배출량을 사용하였고, RADM2 화학 메커니즘과 MADE/SORGAM 에어로졸 스킴 및 GOCART 광물성 먼지 옵션을, 그리고 Fast-J 광해리 스킴을 선택하여 $PM_{10}$ 농도를 시뮬레이션 하였는데 연구 결과를 요약하면 다음과 같다. WRF-Chem 모델 결과에 따른 $PM_{10}$ 농도의 공간적 분포와 연직 프로파일 분석결과 2010년 11월 11-13일에 우리나라에 영향을 미쳤던 황사는 강한 가을황사로 저기압의 발달로 인해 형성된 콤마구름 때문에 황사가 한랭전선 후면에서 갇혀 상공 2.5 km 이내에서 이동 및 유입됨을 알 수 있었다. 황사 발생 기간 동안 백령도와 서울의 기상청 관측 자료와 모델의 $PM_{10}$ 농도를 시계열로 분석한 결과 상관계수와 평균제곱근오차(RMSE)는 백령도의 경우 0.763과 $192.73{\mu}g/m^3$, 서울의 경우 0.725와 $149.68{\mu}g/m^3$로 나타났다. 미세먼지인 $PM_{10}$$PM_{2.5}$ 농도의 공간적 분포는 유사하였고 $PM_{2.5}$$PM_{10}$의 약 50% 정도로 나타났으며 이는 기상청 UM-ADAM 모델 결과와도 유사하였다. $PM_{10}$ 농도와 경계층 높이, 동서 성분 바람장의 공간적 분포는 유사성을 지니고 있어 두 개의 변수를 이용하여 $PM_{10}$의 농도를 예측하는 회귀 방정식을 구하고자 우리나라에 영향을 미쳤던 강한 가을 황사(2010년 11월 11-13일)와 봄 황사(2011년 3월 19-20일) 사례를 선정하였고, 통계 모델을 이용한 회귀식을 도출하였다.

The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

키워드

참고문헌

  1. Chang M.-H., E.-H. Ha, Y.-J. Suh, B.-E. Lee, H.-J. Kwon, S.-S. Hwang, Z.-M. Li, J.-H Seo, and B.-M. Kim, 2009, The Perceived Symptom and Preventive Behavior Related to Asian Dust Event: in South Korean and Chinese, The Journal of Korean Society for Atmospheric Environment, 25(1), 26-37. (in Korean) https://doi.org/10.5572/KOSAE.2009.25.1.026
  2. Chen, F. and Dudhia, J., 2001, Coupling and advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system, Part I: Model implementation and sensitivity, Mon. Weather Rev. 129. 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  3. Chin, M., Ginoux, P., Kinne, S., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T., 2002, Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements, J. Atmos. Sci., 59. 461-483. https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
  4. Cho, C., Y. Chun, B. Ku, S.-U. Park, S.-S. Lee, and Y.-A. Chung, 2007, Comparison of ADAM's (Asian Dust Aerosol Model) Results with Observed PM10 Data, Atmosphere, 17(1), 87-99. (in Korean)
  5. Choi, H., 2010, Impact of Fine Particulate Matters Transported from Gobi Desert to Particulate Matter Concentrations ($PM_{10}$, $PM_{2.5}$, $PM_1$) for Yellow Sand Event Period in Fall: Case Study of October 27, 2003, The Journal of climate research, 5(3), 219-233. (in Korean)
  6. Chou, M.-D. and Suarez, M. J., 1994, An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo. 104606. 85.
  7. Goo, T.-Y., G.-M. Hong, S.-B. Kim, J.-U. Gong and M.-S. Kim, 2008, A case study of aerosol features of Asian dust, fog, clear sky, and cloud at Anmyeon Island in April 2006, Atmosphere, 18(2), 99-111. (in Korean)
  8. Grell, G. A. and Devenyi, D., 2002, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29(14). 1693. https://doi.org/10.1029/2002GL015311
  9. Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B., 2005, Fully coupled "online" chemistry within the WRF model, Atmospheric Environment, 39(37). 6957-6975.
  10. Gong, S.L., Zhang, X.Y., Zhao, T.L., McKendry, I. G., Jaffe, D.A., and Lu, N.M., 2003, Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation, J. Geophys. Res.. 108(D9). 4262. https://doi.org/10.1029/2002JD002633
  11. Hong, S. Y., Yign, N., and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318-2341, 2006. https://doi.org/10.1175/MWR3199.1
  12. In, H. J., and Park, S. U., 2002, A simulation of longrange transport of Yellow Sand observed in April 1998 in Korea, Atmospheric Environment, 36(2), 4173-4187. https://doi.org/10.1016/S1352-2310(02)00361-8
  13. Kang, D.-H., J. Kim, K. E. Kim, and B.-S. Lim, 2012, Aerosol Size Distributions and Optical Properties during Severe Asian Dust Episodes Measured over South Korea in Spring of 2009-2010, Atmosphere, 22(3), 369-381. (in Korean)
  14. Kang, J.-Y., S.-W. Kim, and S.-C. Yoon, 2012, Estimation of Dust Emission Schemes and Input Parameters in Wintertime Asian Dust Simulation: A Case Study of Winter Dust Event on December 29, 2007, The Journal of Korean Society for Atmospheric Environment, 28(1), 1-11. (in Korean) https://doi.org/10.5572/KOSAE.2012.28.1.001
  15. Kim, D.-R., J.-S. Kim, S.-J. Ban, 2010,. A Study on the Characteristics of Soil in the Asian Dust Source Regions of Mongolia, The Journal of Korean Society for Atmospheric Environment, 26(6), 606-615. (in Korean) https://doi.org/10.5572/KOSAE.2010.26.6.606
  16. Kim, H. and J. Kay, 2010, Forecast Sensitivity Analysis of An Asian Dust Event occurred on 6-8 May 2007 in Korea, Atmosphere, 20(4), 399-414. (in Korean)
  17. Kim, H., K.-M. Jung, D.J. Kim, and J.T. Lee, 2002, Characteristics of Inorganic Components in Fine Particles Collected at Chunchon during the Springtime Yellow Sand Occurrence Period in 2002, The Journal of Environmental Health and Toxicology, 17(4), 333-339. (in Korean)
  18. Kim, J.-Y., B.-M. Kim, O.-J. Kim, E.-H. Ha, J.-H. Seo, B.-E. Lee, and H.-S. Park, 2006, The Perceived Symptom and Preventive Behavior Related to Asian Dust Event: in South Korean and Chinese, The Journal of Korean Society for Atmospheric Environment, 22(4), 509-517. (in Korean)
  19. Kim, K. H., and Kim, M. Y., 2003, The effects of Asian Dust on particulate matter fractionation in Seoul, Korea during spring 2001. Chemosphere, 51(8), 707-721. https://doi.org/10.1016/S0045-6535(03)00036-5
  20. Kim, M.-J., Y. Kim, E.-H. Sohn, K.-L. Kim, M.-H. Ahn, 2008,. The Study on the Quantitative Dust Index Using Geostationary Satellite, Atmosphere, 18(4), 267-277. (in Korean)
  21. Kim, S., S. Lee, 2009,. The Study on Occurrence of Asian Dust and Their Controlling Factors in Korea, The Journal of Korean Geographical Society, 44(6), 675-690. (in Korean)
  22. Kim, S. Y., and S.H. Lee, 2009, The Study on Occurrence of Asian Dust and Their Controlling Factors in Korea, The Journal of the Korean Geographic Society, 44(6), 675-690. (in Korean)
  23. Kim, S., Y. Chun, and S.-B. Kim, 2010, The Features of Asian Dust Events Originated in Manchuria, Atmosphere, 20(3), 273-286. (in Korean)
  24. Kim, Y., 2011,. Impacts of Asian Dust on Atmospheric Environment, The Journal of Korean Society for Atmospheric Environment, 27(3), 255-271. (in Korean) https://doi.org/10.5572/KOSAE.2011.27.3.255
  25. Kumar, R., Barth, M. C., Pfister, G. G., Naja, M., and Brasseur, G. P., 2014, WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget, Atmospheric Chemistry and Physics, 14(5), 2431-2446. https://doi.org/10.5194/acp-14-2431-2014
  26. Lee, B.-I., E.-H. Sohn, M.-L. Ou., and Y. Kim, 2009, Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS, Atmosphere, 19(4), 319-329. (in Korean)
  27. Lee, B.-I., S.-C. Yoon, and Y. Kim, 2008, Analysis of Vertical Profiles and Optical Characteristics of the Asian Dust Using Groung-based Measurements, Atmosphere, 18(4), 287-297. (in Korean)
  28. Lee, D.-E., W.-H. Kim, H.-J. Ko, Y.-S. Oh, and C.-H. Kang, 2013, Chemical Composition Characteristics of Size-fractionated Particles during Heavy Asian Dust Event in Spring, 2010, The Journal of Korean Society for Atmospheric Environment, 29(3), 325-337. (in Korean) https://doi.org/10.5572/KOSAE.2013.29.3.325
  29. Lee, E.-H., S. Kim, J.-C. Ha, and Y. Chun, 2012, Performance Analysis of Simulation of Asian Dust Observed in 2010 by the all-Season Dust Forecasting Model, UM-ADAM2, Atmosphere, 22(2), 245-257. (in Korean) https://doi.org/10.14191/Atmos.2012.22.2.245
  30. Lee, H.-J., E. H. Lee, S.-S. Lee, and S. Kim, 2012, Study on Methodology for Estimating PM10 Concentration of Asian Dust Using Visibility Data, Atmosphere, 22(1), 13-28. (in Korean) https://doi.org/10.14191/Atmos.2012.22.1.013
  31. Lee, H.-J., J. E. Kim, and Y. Chun, 2013, Aerosol Vertical Distribution Measured by LIDARs in Baengnyeongdo, Munsan, and Gunsan during 10-11 May 2010, Atmosphere, 23(4), 519-526. (in Korean) https://doi.org/10.14191/Atmos.2013.23.4.519
  32. Lee, H., S.-B. Kim, S. Kim, S. Song, and Y. Chun, 2011, The Aerosol Characteristics in Coexistence of Asian Dust and Haze during 15-17 March, 2009 in Seoul, The Journal of Korean Society for Atmospheric Environment, 27(2), 168-180. (in Korean) https://doi.org/10.5572/KOSAE.2011.27.2.168
  33. Lee, J., M.-Y. Kim, K.-H. Kim, SM Hong, Z-H Son, and S.-C. Lee, 2007, Inspection on the Influence of Asian Dust on the Distribution of Atmospheric Mercury Observed for a Long Time, The Journal of Korean Society for Atmospheric Environment, 23(2), 169-182. (in Korean) https://doi.org/10.5572/KOSAE.2007.23.2.169
  34. Lee, J.-J. and C.-H. Kim, 2008, Characteristics of Recent Occurrence Frequency of Asian dust over the Source Regions-Analysis of the dust Occurrence since 2002, Atmosphere, 18(4), 493-506. (in Korean)
  35. Lee M. H., E. J. Han, and Y. S. Won, 1986, Yellow Sand Phenomena Influence to the Atmosphere in Korea, The Journal of Korea Air Pollution Research, 2(3), 33-34. (in Korean)
  36. Lee, Y.-J. Lee, S.-A Jung, M.-R. Jo, S.-J. Kim, M.-K. Park, J.-Y. Ahn, Y.-S. Lyu, W.-J. Choi, Y.-d. Hong, J.-S. Han, and J.-H. Lim, 2014, Characteristics of PM Chemical Component during Haze Episode and Asian Dust at Gwang-ju, The Journal of Korean Society for Atmospheric Environment, 30(5), 434-448. (in Korean) https://doi.org/10.5572/KOSAE.2014.30.5.434
  37. Lei, Y. C., Chan, C. C., Wang, P. Y., Lee, C. T., and Cheng, T. J., 2004, Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environmental Research, 95(1), 71-76. https://doi.org/10.1016/S0013-9351(03)00136-1
  38. Lin, S. J., and Rood, R.B.,, 1994, Multidimensional fluxform semi-Lagrangian transport schemes, Monthly Weather Review, 124, 2046-2070.
  39. Mlawer, E. J., Taubman, S., Brown, P., Iacono, M., and Clough, S., 1997, Radiative transfer for inhomogeneous atmosphere: RRTM, avalidated correlated-k model for the long-wave, J. Geophys. Res., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  40. Moon, Y.-S., and S.-H. Lee, 2009, Estimation of Hourly Emission Flux of Asian Dust Using Empirical Formulas in the Source Area. The Journal of Korean Society for Atmospheric Environment, 25(6), 539-549. (in Korean) https://doi.org/10.5572/KOSAE.2009.25.6.539
  41. Moon, Y.-S., E.-J. Hwang, and S.-H. Lee, 2006, Suggest on Meteorological Guideline for Asian Dusts in the Korean Peninsular, Proceeding of the 43rd Meeting of KOSAE (2006) Korean Society for Atmospheric Environment, 471-472. (in Korean)
  42. Moon, Y.S., Koo Y.S., and Jung, O.J., 2014, Analysis of Sensitivity to Prediction of Particulate Matters and Related Meteorological Fields Using the WRF-Chem Model during Asian Dust Episode Days, The Journal Korea Earth Science Society, 35(1), 1-18. (in Korean) https://doi.org/10.5467/JKESS.2014.35.1.1
  43. Moon, Y.S., Lim Y.K., and Lee, K., 2011, An estimation of concentration of Asian dust using WRF-SMOKECMAQ (MADRID) during springtime in the Korean peninsula, J. of the Korean Earth Science Society, 32, 276-293. (in Korean) https://doi.org/10.5467/JKESS.2011.32.3.276
  44. Park, I., S. Lim, M. Lee, Y. J. Lee, and J. S. Kim, 2011, Ionic Compositions of PM10 and Reactive Gases during Asian Dust Events in March 2007, The Journal of Korean Society for Atmospheric Environment, 27(4), 395-404. (in Korean) https://doi.org/10.5572/KOSAE.2011.27.4.395
  45. Park, S. M., K. J. Moon, J. S. Park, H. J. Kim, J. Y. Ahn and J. S. Kim, 2012, Chemical Characteristics of Ambient Aerosol during Asian Dusts and High PM Episodes at Seoul Intensive Monitoring Site in 2009, The Journal of Korean Society for Atmospheric Environment, 28(3), 282-293. (in Korean) https://doi.org/10.5572/KOSAE.2012.28.3.282
  46. Pfister, G. G., Parrish, D. D.,Worden, H., Emmons, L. K., Edwards, D. P., Wiedinmyer, C., Diskin, G. S., Huey, G., Oltmans, S. J., Thouret, V., Weinheimer, A., and Wisthaler, A., 2011, Characterizing summertime chemical boundary conditions for airmasses entering the US West Coast, Atmos. Chem. Phys., 11, 1769-1790. https://doi.org/10.5194/acp-11-1769-2011
  47. Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A., 2001, Modeling the formation of secondary organic aerosol within a comprehensive air quality model system, J. Geophs. Res., 106, 28275-28293. https://doi.org/10.1029/2001JD000384
  48. Shaw, W., Allwine, K.J., Fritz, B.G., Rutz, F. C., Rishel, J.P., and Chapman, E.G., 2008, An evaluation of the wind erosion module in DUSTRAN, Atmospheric Environment, 42, 1907-1921. https://doi.org/10.1016/j.atmosenv.2007.11.022
  49. Shaw, Y., 2004, Simplification of dust emission scheme and comparison with data, J. Geophys. Res., 109, D10202 https://doi.org/10.1029/2003JD004372
  50. Shin, D. C., 2007, Health Effects of Ambient Particulate Matter, Journal of the Korean Medical Association, 50(2), 175-182. (in Korean) https://doi.org/10.5124/jkma.2007.50.2.175
  51. Shin S. A., J. S. Han and S. D. Kim, 2006, Source Apportionment and the Origin of Asian Dust Observed in Korea by Receptor Modelling (CMB), The Journal of Korean Society for Atmospheric Environment, 22(2), 157-166. (in Korean)
  52. Sim, S.-Y., S. S. Park., D.-R. Kim. and S.-J. Lee., 2013, Impact of Acidification on the Solubility of Metal Species in Asian Desert Dusts: Results from Laboratory Experiments, The Journal of Korean Society for Atmospheric Environment, 29(1), 64-73. (in Korean) https://doi.org/10.5572/KOSAE.2013.29.1.64
  53. Song, S.-K. and Y.-K. Kim, 2005, A Case Study of an Asian Dust (Hwangsa) Event Observed in November 2002 in Korea, Atmosphere, 41(5), 707-715. (in Korean)
  54. Shin, D. S., Kim, S., Kim, J. S., and Cha, J.W., 1999, Aerosol Optical Thickness of the Yellow Sand from Direct Solar Radiation at Anmyeon Island during the Spring of 1998, J. of Korean Society for Atmospheric Environment, 15(6), 739-746. (in Korean)
  55. Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X., 1990, The second-generation regional acid deposition model chemical mechanism for regional air quality modeling, J. Geophys. Res., 95, 16343-16367. https://doi.org/10.1029/JD095iD10p16343
  56. Tegen, I. and Lacis, A. A., 1996, Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol, J. Geophys. Res., 101, 19237-19244. https://doi.org/10.1029/95JD03610
  57. Wang Z., Ueda, H., and Huang, M., 2000, A deflation module for use in modeling long-range transport of yellow sand over East Asia, J. Geophys. Res., 105, 26947-26959. https://doi.org/10.1029/2000JD900370
  58. Wild, O., Zhu, X., and Prather, M. J., 2000, Fast-J: Accurate simulation of in-and below-cloud photolysis in tropospheric chemical models, Journal of Atmospheric Chemistry, 37(3), 245-282. https://doi.org/10.1023/A:1006415919030
  59. Zhao C., X. Liu, L.R. Leung, B. Johnson, S. A. McFarlane, W.I. Gustafson Jr., J.D. Fast, and R. Easter, 2010, The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821-8838. https://doi.org/10.5194/acp-10-8821-2010
  60. Zhang, R., R. Arimoto, J. An, S. Yabuki, and J. Sun, 2005, Ground observations of a strong dust storm in Beijing in March, J. Geophys. Res., 1, 10.