DOI QR코드

DOI QR Code

수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area

  • 문윤섭 (한국교원대학교 환경교육학과)
  • Moon, Yun Seob (Department of Environmental Education, Korea National University of Education)
  • 투고 : 2015.02.09
  • 심사 : 2015.02.26
  • 발행 : 2015.02.28

초록

본 연구의 목적은 휘발성 유기화합물(VOC)과 먼지(PM)의 배출원 프로파일로부터 화학종 분류를 할당하고, 성김 행렬 조작자 핵심 배출량 시스템(SMOKE) 내에 배출원 분류코드에 따른 배출원 프로파일의 화학종 분류와 시간분배계수를 수정하는 것이다. 기솔린, 디젤 증기, 도장, 세탁, LPG 등과 같은 VOC 배출원 프로파일로부터 화학 종 분류는 탄소 결합 IV (CBIV) 화학 메커니즘과 주 규모 대기오염연구센터 99 (SAPRC99) 화학 메커니즘을 위해 각각 12종과 34종을 포함한다. 또한 토양, 도로먼지, 가솔린, 디젤차, 산업기원, 도시 소각장, 탄 연소 발전소, 생체 연소, 해안 등과 같은 PM2.5 배출원 프로파일로부터 화학종 분류는 미세 먼지, 유기탄소, 원소 탄소, 질산염과 황산염의 5종으로 할당하였다. 게다가 점 및 선 배출원의 시간 프로파일은 2007년 수도권 지역에서의 굴뚝 원격감시시스템(TMS)과 시간별 교통 흐름 자료로부터 구하였다. 특별히 점 배출원에 있어 오존 모델링을 위한 시간분배계수는 굴뚝 원격감시시스템 자료의 $NO_X$ 배출량 인벤토리에 근거하여 추정하였다.

The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

키워드

참고문헌

  1. Arteta, J., Cautenet, S., Taghavi, M., and Audiffren, N., 2006, Impact of two chemistry mechanisms fully coupled with mesoscale model on the atmospheric pollutants distribution. Atmospheric Environment, 40, 7983-8001. https://doi.org/10.1016/j.atmosenv.2006.06.050
  2. Bong, C.G., Yoon, J.S., Whang, I.J., Kim, C.N., and Kim, D.S., 2003, Estimation of quantitative source contribution of VOCs in Seoul area. Journal of Korean Atmospheric Environment Society, 19(4), 387-396.(in Korean)
  3. Byun, D.W., Kim, S.T., Czader, B., and Coarfa, V., 2006, Comparison of CB4 & SAPRC mechanism for Houston-Galveston airshed. Presented at the TexAQSII Rapid Science Synthesis Workshop, /http://www.tceq.state.tx.us/implementation/air/airmod/texaqs-files/TexAQS_II.html#workshopsS.
  4. Carter, W.P.L., 2000, Implementation of the SAPRC-99 chemical mechanism into the models-3 framework. Report to the United States Environmental Protection Agency, /http://www.cert.ucr.edu/carter/absts.htm#s99mod3S.
  5. Carter, W.P.L., 2007, Documentation of the SAPRC-07 chemical mechanism and updated ozone reactivity scales. Final Report to the California Air Resources Board, /http://pah.cert.ucr.edu/carter/SAPRC/saprc07.docS.
  6. CORINAIR, 2001, EMEP/CORINAIR Atmospheric Emission Inventory Guide book, 3rd Edition. European Environment Agency (EEA), Copenhagen, http://reports.eea.eu.int.
  7. Dove, C.J., Watterson, J.P., Goodwin, J.W.L., Murrells, T.P., Passant, N.R., Hobson, M.M., Baggott, S.L., Thistlethwaite, G., Coleman, P.J., King, K.R., Adams, M., and Cumine, P.R., 2004, UK Emissions of air pollutants 1970-2002. AEA Technology, Harwell, UK.
  8. Faraji, M., Kimura, Y., McDonald-Buller, E., and Allen, D., 2008, Comparison of the carbon bond and SAPRC photochemical mechanisms under conditions relevant to southeast Texas. Atmospheric Environment, 42(23), 5821-5836, doi:10.1016/j.atmosenv.2007.07.048.
  9. Gery, M.W., Whitten, G.Z., Killus, J.P., and Dodge, M.C., 1989, A photochemical kinetics mechanism for urban and regional scale computer modeling. Journal of Geophysical Research 94 (D10), 12925-12956. https://doi.org/10.1029/JD094iD10p12925
  10. Han, J.S., Hong, Y.D., Shin, S.A., Lee, S.U., and Lee, S.J., 2005, Receptor model (CMB) and source apportionments of VOCs in Seoul metropolitan area, Journal of Environmental Impact Assessment, 14(4), 227-235. (in Korean)
  11. Jimenez, P., Baldasano, J.M., and Dabdub, D., 2003. Comparison of photochemical mechanisms for air quality modeling. Atmospheric Environment 37, 4179-4194. https://doi.org/10.1016/S1352-2310(03)00567-3
  12. Kim, B.U., Lee, H.S, and Kim, H.G., 2000, Source identification of fine particle (PM2.5) in Chongju using a chemical mass balance model. Journal of Korean Atmospheric Environment Society, 16(5), 477-485. (in Korean)
  13. Kuhlwein, J., Wickert, B., Trukenmuller, A., Theloke, J., and Friendrich, R., 2002, Emission-modeling in high spatial and temporal resolution and calculation of pollutant concentrations for comparisons with measured concentrations. Atmospheric Environment 36(1), S7-S18. https://doi.org/10.1016/S1352-2310(02)00209-1
  14. Laing, R., Wickert, B., and Friedrich, R., 1996, Careaira computer aided modeling toolbox to generate and analyze emission data in high temporal and spatial resolution. Journal of the Air and Waste Management Association 48, 1175-1182.
  15. Lee, H.S., Kang, C.M., Kang, B.U., and Lee, S.G., 2005, A study on the PM_(2.5) source characteristics affecting the Seoul area using a chemical mass balance receptor model. Journal of Korean Atmospheric Environment Society, 16(5), 477-485. (in Korean)
  16. Luecken, D.J., Phillips, S., Sarwar, G., and Jang C., 2008, Effect of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions: Ozone and gas-phase photochemical precursor concentrations. Atmospheric environment, 42, 5805-5820. https://doi.org/10.1016/j.atmosenv.2007.08.056
  17. Moon, Y.S., Lim, Y.K., and Lee K., 2011, An estimation of concentration of Asian dust (PM10) using WRFSMOKE-CMAQ (MADRID) during springtime in the Korean peninsula. Journal of the Korean Earth Science Society, 32(3), 276-293. (in Korean) https://doi.org/10.5467/JKESS.2011.32.3.276
  18. Moon, Y.S., Lim, Y.K., Hong, S., and Chang, E., 2013, Verification and estimation of the contributed concentration of $CH_4$ emissions using the WRF-CMAQ model in Korea. Journal of the Korean Earth Science Society, 34(3), 209-223. (in Korean) https://doi.org/10.5467/JKESS.2013.34.3.209
  19. Moon, Y.S., Koo, Y.S., and Jung, O.J., 2014, Analysis of sensitivity to prediction of particulate matters and related meteorological fields using the WRF-Chem model during Asian dust episode days. Journal of the Korean Earth Science Society, 35(1), 1-18. (in Korean) https://doi.org/10.5467/JKESS.2014.35.1.1
  20. Nopmoncol, U. and Allen, D.T., 2006, Modeling of surface reactions on carbonaceous atmospheric particles during a wood smoke episode in Houston, Texas. Atmospheric Environment, 40, S524-S537. https://doi.org/10.1016/j.atmosenv.2005.12.075
  21. Stockwell, W. R., Middleton, P., Chang, J.S., and Tang, X. 1990, The second generation regional acid deposition model chemical mechanism for regional air quality modeling. Journal of Geophysical Research, 95, 16343-16376. https://doi.org/10.1029/JD095iD10p16343
  22. Stockwell, W.R., Kirchner, F., Kuhn, M., and Seefeld, S., 1997, A new mechanism for regional atmospheric chemistry modeling. Journal of Geophysical Research, 102, 25847-25880. https://doi.org/10.1029/97JD00849
  23. Tesche, T.W., Mornis, R., Tonnesen, G., McNally, D., Boylan, J., and Brewer, P., 2006, CMAQ/CAMx annual 2002 performance evaluation over the eastern US. Atmospheric Environment, 40, 4906-4919. https://doi.org/10.1016/j.atmosenv.2005.08.046
  24. Tonnesen, G.S. and Luecken, D., 2001. Intercomparison of photochemical mechanisms using response surfaces and process analysis. In: Gryning, S.-E., Schiermeier, F.A. (Eds.). Air Pollution and its Application XIV, Kluwer, New York.
  25. Yarwood, G., Rao, S., Yocke, M., and Whitten, G., 2005, Updates to the carbon bond chemical mechanism: CB05. Final report to the U.S. EPA, RT-0400675, www.camx.com.
  26. Yu, Y., Sokhi., R.S., Kitwiroon, N., Middleton, D.R., and Fisher, B., 2009, Performance characteristics of MM5-SMOKE-CMAQ for a summer photochemical episode in southeast England, United Kingdom. Atmospheric Environment, 42, 4870-4883.