DOI QR코드

DOI QR Code

Synthesis of Poly(ethylene oxide-b-acrylonitrile) Block Copolymers with Higher Polyacrylonitrile Content Using Controlled Radical Polymerization Techniques

조절 라디칼 중합법을 이용한 PAN 함량이 많은 PEO-b-PAN 블록 공중합체의 합성

  • Kim, Tae-Young (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kwark, Young-Je (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 김태영 (숭실대학교 유기신소재.파이버공학과) ;
  • 곽영제 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2014.12.20
  • Accepted : 2015.01.31
  • Published : 2015.02.28

Abstract

Poly(ethylene oxide-b-acrylonitrile) (PEO-b-PAN) block copolymers were prepared as precursors to mesoporous carbons. Redox-initiated radical polymerization and controlled radical polymerization techniques, such as reversible addition-fragmentation chain transfer (RAFT) and activators regenerated by electron transfer atom-transfer radical polymerization (ARGET ATRP), were successfully applied to prepare PEO-b-PAN block copolymers with high PAN content. Radical polymerization of acrylonitrile (AN) using ceric ion as redox initiator gave block copolymers with PEO:PAN ratio of up to 1:38.4, but their high molecular weight and polydispersity index (PDI) indicated that the structure was not controlled. Therefore, in order to achieve better control on the structure of the PAN block, controlled radical polymerization techniques were used. Poly(ethylene oxide) with trithiocarbonate (PEO-CTA) and bromide (PEO-Br) end groups were synthesized as polymeric chain transfer agent for the RAFT process and as initiator for the ATRP process, respectively. The RAFT process of AN using PEO-CTA gave block copolymers with PAN block length 0.53-3.58 times that of the PEO block. Moreover, ARGET ATRP allowed to prepare block copolymers with a very high molecular weight of 72,000, while maintaining a PDI value as low as 1.20.

Keywords

References

  1. D. llardice and B. C. Young, "The Utilisation of Low Rank Coals", Austr. Coal. Rev., 2000, 40-46.
  2. M. Kruk, B. Dufour, E. B. Celer, T. Kowalewski, M. Jaroniec, and K. Matyjaszewski, "Well-Defined Poly(ethylene oxide)- Polyacrylonitrile Diblock Copolymers as Templates for Mesoporous Silicas and Precursors for Mesoporous Carbons", Chem. Mater., 2006, 18, 1417-1424. https://doi.org/10.1021/cm0516154
  3. T. Ozturk and I. Cakmak, "Synthesis of Block Copolymers via Redox Polymerization Process: A Critical Review", Iran Polym. J., 2007, 16, 561-581.
  4. K. K. Lee, J. C. Jung, and M. S. Jhon, "The Synthesis and Thermal Phase Transition Behavior of Poly(N-isopropylacrylamide)-bpoly( ethylene oxide)", Polym. Bull., 1998, 40, 455-460. https://doi.org/10.1007/s002890050276
  5. C. Q. Wang, G. Zhang, Z. H. Zhang, X. F. Chen, X. Y. Tang, and H. M. Tan, "Characterization and Properties of Amphiphilic Block Polymer Based on Poly(ethylene oxide) and Poly(butyl acrylate)", J. Appl. Polym. Sci., 2003, 89, 3432-3436. https://doi.org/10.1002/app.12469
  6. I. Cakmak, "Preparation of Multiphase Block Copolymers by Redox Polymerization Process. 2: Polymerization of Acrylonitrile by the Manganese(III)-Poly(ethylene glycol) Redox System", Die Angew Macromol. Chem., 1993, 211, 53-60. https://doi.org/10.1002/apmc.1993.052110105
  7. S. Nagarajan, S. Sudhakar, and K. S. V. Srinivasan, "Polyethylene Glycol Block Copolymers by Redox Process: Kinetics, Synthesis and Characterization", Pure Appl. Chem., 1998, 70, 1245-1248.
  8. Y. Liu, L. Bai, R. Zhang, Y. Li, Y. Liu, and K. Deng, "Block Copolymerization of Poly(ethylene glycol) and Methyl Acrylate Using Potassium Diperiodatocuprate(III)", J. Appl. Polym. Sci., 2005, 96, 2139-2145. https://doi.org/10.1002/app.21594
  9. T. Wodka, "Studies on the Synthesis of Fiber-forming Block Copolymers of Polyacrylonitrile and Poly(ethylene oxide)", J. Appl. Polym. Sci., 1989, 37, 581-594. https://doi.org/10.1002/app.1989.070370301
  10. K. Y. Sui and L. X. Gu, "Preparation and Characterization of Amphiphilic Block Copolymer of Polyacrylonitrile-blockpoly( ethylene oxide)", J. Appl. Polym. Sci., 2003, 89, 1753-1759. https://doi.org/10.1002/app.12036
  11. T. Suzuki, Y. Murakami, and Y. Takegami, "Synthesis and Characterization of Block Copolymers: Poly(ethylene oxide-bmethacrylonitrile) and Poly(ethylene oxide-b-acrylonitrile)", Polym. J., 1982, 14, 431-439. https://doi.org/10.1295/polymj.14.431
  12. H. Dong, W. Tang, and K. Matyjaszewski, "Well-Defined High-Molecular-Weight Polyacrylonitrile via Activators Regenerated by Electron Transfer ATRP", Macromolecules, 2007, 40, 2974-2977. https://doi.org/10.1021/ma070424e
  13. H. Chen, C. Wang, D. Liu, Y. Song, R. Qu, C. Sun, and C. Ji, "AGET ATRP of Acrylonitrile Using 1,1,4,7,10,10-Hexamethyltriethylenetetramine as Both Ligand and Reducing Agent", J. Polym. Sci. Part A: Polym. Chem., 2010, 48, 128-133.
  14. J. Ma, H. Chen, G. Zong, C. Wang, and D. Liu, "FeCl$_3$/Acetic Acid-mediated Reverse Atom Transfer Radical Polymerization of Acrylonitrile", J. Macromol. Sci., Part A: Pure and Appl. Chem., 2010, 47, 1075-1079. https://doi.org/10.1080/10601325.2010.511516
  15. X. H. Liu, G. B. Zhang, X. F. Lu, J. Y. Liu, D. Pang, and Y. S. Li, "Dibenzyl Trithiocarbonate Mediated Reversible Addition- Fragmentation Chain Transfer Polymerization of Acrylonitrile", J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 490-498. https://doi.org/10.1002/pola.21169
  16. X.-H. Liu, Y.-G. Li, Y. Lin, and Y.-S. Li, "2-Cyanoprop-2-yl Dithiobenzoate Mediated Reversible Addition. Fragmentation Chain Transfer Polymerization of Acrylonitrile Targeting a Polymer with a Higher Molecular Weight", J. Polym. Sci.: Part A: Polym. Chem., 2007, 45, 1272-1281. https://doi.org/10.1002/pola.21899
  17. M. Stefik, J. Lee, and U. Wiesner, "Nanostructured Carbon - Crystalline Titania Composites from Microphase Separation of Poly(ethylene oxide-b-acrylonitrile) and Titania Sols", Chem. Commun., 2009, 2532-2534.
  18. J. S. Kim, H. J. Jeon, K. M. Lee, J. N. Im, and J. H. Youk, "Dispersion Polymerization of Acrylonitrile Using a Poly (ethylene glycol)-b-Polyacrylonitrile Macro-RAFT Agent", Fiber. Polym., 2010, 11, 153-157. https://doi.org/10.1007/s12221-010-0153-2
  19. H. Dong and K. Matyjaszewski, "ARGET ATRP of 2- (Dimethylamino)ethyl Methacrylate as an Intrinsic Reducing Agent", Macromolecules, 2008, 41, 6868-6870. https://doi.org/10.1021/ma8017553
  20. J. K. Oh, H. Dong, R. Zhang, and K. Matyjaszewski, "Preparation of Nanoparticles of Double-Hydrophilic PEOPHEMA Block Copolymers by AGET ATRP in Inverse Miniemulsion", J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 4764-4772. https://doi.org/10.1002/pola.22230
  21. J. Rieger, F. Stoffelbach, C. Bui, D. Alaimo, C. Jerome, and B. Charleux, "Amphiphilic Poly(ethylene oxide) Macromolecular RAFT Agent as a Stabilizer and Control Agent in ab Initio Batch Emulsion Polymerization", Macromolecules, 2008, 41, 4065-4068. https://doi.org/10.1021/ma800544v
  22. C. Xiangrong, S. Yi, S. Fei, and W. Yinhua, "Antifouling Ultrafiltration Membranes Made from PAN-b-PEG Copolymers: Effect of Copolymer Composition and PEG Chain Length", J. Membr. Sci., 2011, 384, 44-51. https://doi.org/10.1016/j.memsci.2011.09.002
  23. E. V. Chernikova, Z. A. Poteryaeva, S. S. Belyaev, and E. V. Sivtsov, "Controlled Radical Polymerization of Acrylonitrile in the Presence of Trithiocarbonates as Reversible Addition- Fragmentation Chain Transfer Agents", Russ J. Appl. Chem., 2011, 84, 1031-1039. https://doi.org/10.1134/S1070427211060231
  24. K. Matyjaszewski, S. M. Jo, H.-J. Paik, and D. A. Shipp, "An Investigation into the CuX/2,2'-Bipyridine (X=Br or Cl) Mediated Atom Transfer Radical Polymerization of Acrylonitrile", Macromolecules, 1999, 32, 6431-6438. https://doi.org/10.1021/ma9905526
  25. D. Wang, H. Chen, F. Cao, and J. Sun, "Synthesis of Polyacrylonitrile by ARGET Atom Transfer Radical Polymerization in the Presence of Zinc Powder and Its Adsorption Properties after Modification", Ind. Eng. Chem. Res., 2014, 53, 1632-1637. https://doi.org/10.1021/ie4036274