DOI QR코드

DOI QR Code

Ultra-WideBand Channel Measurement with Compressive Sampling for Indoor Localization

실내 위치추정을 위한 Compressive Sampling적용 Ultra-WideBand 채널 측정기법

  • Received : 2014.10.04
  • Accepted : 2015.02.04
  • Published : 2015.02.28

Abstract

In this paper, Ulta-WideBand (UWB) channel measurement and modeling based on compressive sampling (CS) are proposed. The sparsity of the channel impulse response (CIR) of the UWB signal in frequency domain enables the proposed channel measurement to have a low-complexity and to provide a comparable performance compared with the existing approaches especially used for the indoor geo-localization purpose. Furthermore, to improve the performance under noisy situation, the soft thresholding method is also investigated in solving the optimization problem for signal recovery of CS. Via numerical results, the proposed channel measurement and modeling are evaluated with the real measured data in terms of location estimation error, bandwidth, and compression ratio for indoor geo-localization using UWB system.

본 논문은 compressive sampling (CS)을 활용한 Ulta-WideBand 채널 측정 및 모델링 기법을 제안한다. 기존에 실내 위치측위 기술 중 제안 UWB채널 측정 기법은 UWB 신호의 주파수 도메인에서의 sparsity 특성을 활용하여, 적은 복잡도로 합리적인 성능을 낼 수 있다. 게다가, 본 논문에서는 노이즈 환경에서 성능을 향상 시키기 위해 CS 기법에서 신호 복원기법을 위한 최적화기법으로 soft thresholding method를 제안한다. UWB시스템에서의 실내 위치추정 기법 성능 분석을 위해 실 측정 데이터를 활용하여, 제안한 채널 측정 및 모델링 기법의 성능을 위치 측정 오차, bandwidth, CS 압축률 등 다양한 조건하에 거리 오차값을 분석한다.

Keywords

References

  1. R. J. Barton, Design and analysis of an ultra-wideband location and tracking system for space-Based applications, NASA Johnson Space Center, Houston, TX August 31, 2005.
  2. N. Alsindi, X. Li, and K. Pahlavan, "Analysis of time of arrival estimation using wideband measurement of indoor radio propagations," IEEE Trans. Instrumentation and Measurement, vol. 56, no. 5, pp. 1537-1545, 2007. https://doi.org/10.1109/TIM.2007.904481
  3. B. Alavi K. Pahlavan, "Modeling of the distance error for indoor geolocation," IEEE Wirel. Commun. Netw. (WCNC), pp. 668-672, Mar. 2003.
  4. K. Pahlavan, X. Li, and J.-P. Makela "Indoor geolocation science and technology," IEEE Commun. Mag., vol. 40, no. 2, pp. 112-118, 2002. https://doi.org/10.1109/35.983917
  5. J. H. Kim, I. S. Back, and S. H. Cho, "Compensation of received signal attenuation by distance using UWB radar" in Proc. KICS, pp. 282-283, Feb. 2012.
  6. M.-K. Kang, J. Kang, S. Lee, Y. Park, and K. Kim, "A study on kalman filter in IR-UWB RTLS," in Proc. KICS, pp. 996-997, Jun. 2011.
  7. D.-J. Kang, K.-J. Park, and H.-J. Park, "A study on ways to correct UWB position estimation techniques in indoor environment," in Proc. KICS, pp. 167-168, Feb. 2012.
  8. V. Bataller, A. Munoz, N. Ayuso, and J. L. Villarroel, "Channel estimation in throughthe- earth communications with electrodes," PIERS Online, vol. 7, no. 5, pp. 486-490, 2001.
  9. E. J. Candes and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Mag., pp. 21-30, Mar. 2008.
  10. X. Li and K. Pahlavan, "Super-resolution TOA estimation with diversity for indoor geolocation," IEEE Trans. Wirel. Commun., vol. 3, no. 1, pp. 224-234, Jan. 2004. https://doi.org/10.1109/TWC.2003.819035
  11. K. Pahlavan and A. Levesque, Wireless Information Networks, NY: Wiley, 1995.
  12. B. Ulriksson, "Conversion of frequency-domain data to the time domain," in Proc. IEEE, vol. 74, pp. 74-76, Jan. 1986
  13. C. R. Berger and Z. Wang and Jianzhong Huang, and S. Zhou, "Application of compressive sensing to sparse channel estimation," in Proc. IEEE Commun. Mag., pp. 164-174, Nov. 2010.
  14. M. P. Friedlander and E. van den Berg, SPGL1: A solver for large-scale sparse reconstruction, available at http://www.cs.ubc.ca/labs/scl/spgl1.
  15. S. J. Howard and K. Pahlavan, "Measurement and analysis of the indoor radio channel in the frequency Domain," IEEE Trans. Instrumentation and Measurement, vol. 39, no. 5, Oct. 1990.
  16. A. A. M. Saleh and R. A. Valenzuela, "A statistical model for indoor multipath propagation," IEEE J. Select. Areas Commun., vol. 5, no. 2, pp. 128-137, Feb. 1987. https://doi.org/10.1109/JSAC.1987.1146527
  17. D. L. Donoho, "De-noising by soft thresholding," in Proc. IEEE Trans. Inform. Theory, vol. 41, no. 3, pp. 613-627, May 1995. https://doi.org/10.1109/18.382009
  18. S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic Decomposition by Basis Pursuit," SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33-61, Jul. 2006. https://doi.org/10.1137/S1064827596304010

Cited by

  1. Design of Monitoring System based on IoT sensor for Health Management of an Elderly Alone vol.25, pp.8, 2015, https://doi.org/10.9708/jksci.2020.25.08.081