DOI QR코드

DOI QR Code

An In-Tunnel Traffic Accident Detection Algorithm using CCTV Image Processing

CCTV 영상처리를 이용한 터널 내 사고감지 알고리즘

  • 백정희 (숭실대학교 미디어학과) ;
  • 민주영 (상지영서대학교 국방정보통신과) ;
  • 남궁성 (한국도로공사 도로교통연구원 교통연구실) ;
  • 윤석환 (세명대학교 컴퓨터학부)
  • Received : 2014.03.03
  • Accepted : 2015.01.05
  • Published : 2015.02.28

Abstract

Almost of current Automatic Incident Detection(AID) algorithms involve the vulnerability that detects the traffic accident in open road or in tunnel as the traffic jam not as the traffic accident. This paper proposes the improved accident detection algorithm to enhance the detection probability based on accident detection algorithms applied in open roads. The improved accident detection algorithm provides the preliminary judgment of potential accident by detecting the stopped object by Gaussian Mixture Model. Afterwards, it measures the detection area is divided into blocks so that the occupancy rate can be determined for each block. All experimental results of applying the new algorithm on a real incident was detected image without error.

현존하는 자동 사고감지 알고리즘의 대부분은 개방도로 혹은 터널 내에서 사고 발생 시 이것을 사고로 감지하지 못하고 혼잡으로 감지하는 경우가 많다는 문제점을 가지고 있다. 본 논문에서는 개방도로에서의 사고감지 알고리즘을 기반으로 터널 내에서의 사고감지 알고리즘을 개선하여 감지율을 높일 수 있는 알고리즘을 제안하였다. 개선된 알고리즘은 가우시안 혼합모델을 이용하여 픽셀의 변화량을 판단하여 터널 내 사고로 인한 정지차량을 우선 감지한 후 도로를 블록화하여 블록 간 점유율의 편차를 분석하여 최종 판단을 한다. 실제 사고영상에 알고리즘을 적용한 실험에서 모두 오류 없이 검지하였음을 확인하였다.

Keywords

References

  1. C. Naussbaumer, "Comparative analysis of safety in tunnels," in Young Reseachers Seminar 2007, European Conference of Transport Research Institutes, 2007.
  2. F. Andres, O. N. Jorge, J. Vedran, P. Aleksandra and P. Wilfried, "A Mathematical Morphology based Approach for Vehicle Detection in Road Tunnels," in Proceedings of SPIE, the International Society for Optical Engineering, Vol.8135, 2011.
  3. e-Narajipyo, Statistics of Road bridges and tunnels in Korea[internet], http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1213.
  4. H. T. Kim, G. H. Lee, J. S. Park, and Y. S. Yu, "Vehicle Detection in Tunnel using Gaussian Mixture Model and Mathematical Morphological Processing," Journal of the Korea Institute of Electronic Communication Sciences, Vol.7, No.5, pp.967-974, 2012. https://doi.org/10.13067/JKIECS.2012.7.5.967
  5. B. Martin, S. Vogler, C. Diers, M. Martens, J. Lacroix, M. Steiner, P. Schmitz, and M. Serrano, "Recommendations for the enhancement of Preventive Tunnel safety," SafeT Work package 2 Final Report, 2005.
  6. Ministry of Land, Infrastructure and Transport, "The National Guideline for the Installation and Management of Road Tunnel Fire Safety Facilities," Seoul: Ministry of Land, Infrastructure and Transport, 2009.
  7. J. Oh, J. Y. Min, "Gaussian background mixture model based automatic incident detection system for real-time tracking," Canadian Journal of Civil Engineering, Vol.38, pp.1158-1169, 2011. https://doi.org/10.1139/l11-073
  8. H. Schwabach, M. Harrer, W. Holzmann, H. Bischof, G. Fernandez Dominguez, M. Noolle, R. Pflugfelder, B. Strobl, A. Tacke, and A. Waltl, "VIDEO BASED IMAGE ANALYSIS FOR TUNNEL SAFETY-VITUS-1: A TUNNEL VIDEO SURVEILLANCE AND TRAFFIC CONTROL SYSTEM," in Proceedings of the 12th World Congress on Intelligent Transport Systems, 2005.
  9. Korea Expressway Cooperation, "A Study on Constructing Evaluation method of Video Incident Detection system in Freeway Tunnels and Extended application plans," Vol.1-Vol.4, 2012.
  10. J. Versavel, B. Boucke, "Operational Traffic Management by Using Video Detection," ITS America. Meeting (8th: 1998: Detroit, Mich.), Transportation technology for tomorrow: conference proceedings. 1998.
  11. B. Strobl, M. Harrer, G. Zoffmann, H. Bischof, A. Tacke, A. Waltl, C. Beleznai, M. Dittrich, H. Grabner, H. Schwabach, and G. Fernadez Dominguez, "VITUS-TUNNEL SAFETY THROUGH VIDEO BASED IMAGE ANALYSIS," Proceedings Of The 13th ITS WORLD CONGRESS, London, 8-12th, Oct., 2006.
  12. H. Rakha, B. Hellinga, and M. V. Aerde, "Testbed for Evaluating Automatic Incident Detection Algorithms," in Intelligent Transportation System Safety and Security Conference, Miami, 24-25th Mar., 2004.
  13. J. J. Reijmers, Traffic Guidance System[internet] http://www.pn.ewi.tudelft.nl/education/et-024/notes/h12.pdf
  14. C. Stauffer, W. Grimson, "Adaptive background mixture models for real-time tracking," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.246-252, 1999.

Cited by

  1. Research on the intelligent judgment of traffic congestion in intelligent traffic based on pattern recognition technology pp.1573-7543, 2018, https://doi.org/10.1007/s10586-017-1684-8