
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468/jksmeb.2015.22.1.75 ISSN(Online) 2287-6081
Volume 22, Number 1 (February 2015), Pages 75–90

GLOBAL SOLUTIONS OF THE COOPERATIVE
CROSS-DIFFUSION SYSTEMS

Seong-A Shim

Abstract. In this paper the existence of global solutions of the parabolic cross-
diffusion systems with cooperative reactions is obtained under certain conditions.
The uniform boundedness of W1,2 norms of the local maximal solution is obtained by
using interpolation inequalities and comparison results on differential inequalities.

1. Introduction

This article deals with the following quasilinear parabolic system in population
dynamics which is called cooperative cross-diffusion system.

(1.1)





ut = (d1 u + α11u
2 + α12uv)xx + u(a1 − b1u + c1v) in [0, 1]× (0,∞),

vt = (d2 v + α21uv + α22v
2)xx + v(a2 + b2u− c2v) in [0, 1]× (0,∞),

ux(x, t) = vx(x, t) = 0 at x = 0, 1,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in [0, 1],

where α12, α21, d, ai, bi, ci are positive constants for i = 1, 2. The initial functions
u0, v0 are not constantly zero. In the system (1.1) u and v are nonnegative functions
which represent the population densities of two species in a cooperative relationship.
d1 and d2 are the diffusion rates of the two species, respectively. a1 and a2 denote
the intrinsic growth rates, b1 and c2 account for intra-specific cooperative pressures,
b2 and c1 are the coefficients for inter-specific competitions. α11 and α22 are usually
referred as self-diffusion, and α12, α21 are cross-diffusion pressures. By adopting the
coefficients αij (i, j = 1, 2) the system (1.1) takes into account the pressures created
by mutually interacting species. For more details on the backgrounds of this model,
the readers are refered to Okubo and Levin[7].

Pao[8] in 2005, and Delgado et al.[4] in 2008 have obtained some results on the
existence of global solutions of the elliptic cross-diffusion systems with cooperative
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reactions. In this paper the existence of global solutions of the parabolic cross-
diffusion systems with cooperative reactions is obtained under certain conditions.
To state results on the system (1.1) we use the following notation throughout this
paper.

Notations. Let Ω be a region in Rn. The norm in Lp(Ω) is denoted by |·|Lp(Ω),

1 ≤ p ≤ ∞, where |f |Lp(Ω) =
(∫

Ω |f(x)|p dx
)1/p, if 1 ≤ p < ∞, and |f |L∞(Ω) =

sup {|f(x)| : x ∈ Ω}. The usual Sobolev spaces of real valued functions in Ω with
exponent k ≥ 0 are denoted by W k

p (Ω), 1 ≤ p < ∞. And ‖·‖W k
p (Ω) represents the

norm in the Sobolev space W k
p (Ω). For Ω = [0, 1] ⊂ R1 we shall use the simplified

notation ‖·‖k,p for ‖·‖W k
p (Ω) and |·|p for |·|Lp(Ω).

The local existence of solutions to (1.1) was established by Amann [1], [2], [3].
According to his results the system (1.1) has a unique nonnegative solution u(·, t),
v(·, t) in C([0, T ), W 1

p (Ω)) ∩ C∞((0, T ), C∞(Ω)), where T ∈ (0,∞] is the maximal
existence time for the solution u, v. The following result is also due to Amann [2].

Theorem 1.1. Let u0 and v0 be in W 1
p (Ω). The system (1.1) possesses a unique

nonnegative maximal smooth solution u(x, t), v(x, t) ∈ C([0, T ),W 1
p (Ω)) ∩ C∞(Ω ×

(0, T )) for 0 ≤ t < T , where p > n and 0 < T ≤ ∞. If the solution satisfies the
estimates sup

0<t<T
‖u(·, t)‖W 1

p (Ω) < ∞, sup
0<t<T

‖v(·, t)‖W 1
p (Ω) < ∞, then T = +∞. If,

in addition, u0 and v0 are in W 2
p (Ω) then u(x, t), v(x, t) ∈ C([0,∞),W 2

p (Ω)), and
sup

0≤t<∞
‖u(·, t)‖W 2

p (Ω) < ∞, sup
0≤t<∞

‖v(·, t)‖W 2
p (Ω) < ∞.

Here we state the main results of this paper. Throughout this this paper we
assume the condition

(1.2) b1c2 > b2c1

which means the inter-specific competition pressures are greater than the intra-
specific cooperative pressures.

Theorem 1.2. Suppose that the initial functions u0, v0 are in W 2
2 ([0, 1]). Also

assume the condition (1.2). Let (u(x, t), v(x, t)) be the maximal solution to the sys-
tem (1.1) as in Theorem 1.1. Then there exist positive constant

M0 = M0(‖u0‖1, ‖v0‖1, a1, a2, b1, b2, c1, c2)

such that

sup{‖u(·, t)‖1, ‖v(·, t)‖1 : t ∈ [0, T )} ≤ M0
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For the boundedness results of L2 and W1,2 norms of the maximal solution to the
system (1.1) we assume the following condition in Theorem 1.3, Theorem 1.4

(1.3) α2
12 < 8α11α21 and α2

21 < 8α12α22.

Theorem 1.3. Suppose that the initial functions u0, v0 are in W 2
2 ([0, 1]). Also

assume the conditions (1.2) and (1.3). Let (u(x, t), v(x, t)) be the maximal solution
to the system (1.1) as in Theorem 1.1. Then there exists a positive constant M1 =
M1(‖u0‖1, ‖v0‖1, di, ai, bi, ci, i = 1, 2) such that

sup{‖u(·, t)‖2, ‖v(·, t)‖2 : t ∈ [0, T )} ≤ M1.

Theorem 1.4. Suppose that the initial functions u0, v0 are in W 2
2 ([0, 1]). Also

assume the conditions (1.2) and (1.3). Let (u(x, t), v(x, t)) be the maximal solution
to the system (1.1) as in Theorem 1.1. Then there exists a positive constant M2 =
M2(‖u0‖1, ‖v0‖1, di, αij , ai, bi, ci, i = 1, 2) such that

sup{‖u(·, t)‖1,2, ‖v(·, t)‖1,2 : t ∈ [0, T )} ≤ M2.

From the results of Theorems 1.2, 1.3 and 1.4 and the Sobolev embedding in-
equality we have positive constants M ′ = M ′(di, αij , ai, bi, ci, i = 1, 2) and M =
M(di, αij , ai, bi, ci, i = 1, 2) such that for the maximal solution (u, v) of (1.1) with
the conditions (1.2), (1.3)

(1.4)
sup{‖u(·, t)‖1,2, ‖v(·, t)‖1,2 : t ∈ [0, T )} ≤ M ′,

sup{u(x, t), v(x, t) : (x, t) ∈ [0, 1]× [0, T )} ≤ M.

We also conclude that T = +∞ from Theorem 1.1.

This paper is organized as follows. Section 2 provides preliminaries on differential
equations and a few consequences of Gagliardo-Nirenberg interpolation inequality
which are necessary for the proofs of Theorems 1.2, 1.3, and 1.4. And Sections 3, 4,
and 5 present the proofs of Theorems 1.2, 1.3, and 1.4, respectively.

2. Preliminaries

This section introduce the Gagliardo-Nirenberg interpolation inequality and its
consequences. Also some preliminary results on the bounds and comparisons of
differential equations and inequalities are provided.

Theorem 2.1 (Gagliardo-Nirenberg interpolation inequality). Let Ω ∈ Rn be a
bounded domain with ∂Ω in Cm. For every function u in Wm,r(Ω), 1 ≤ q, r ≤ ∞
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the derivative Dju, 0 ≤ j < m, satisfies the inequality

(2.1) |Dju|p ≤ C(|Dmu|ar |u|1−a
q + |u|q),

where 1
p = j

n + a
(

1
r − m

n

)
+ (1 − a)1

q for all a in the interval j
m ≤ a < 1, provided

one of the following three conditions :
(i) r ≤ q,
(ii) 0 < n(r−q)

mrq < 1, or

(iii) n(r−q)
mrq = 1 and m− n

q is not a nonnegative integer.
(The positive constant C depends only on n, m, j, q, r, a.)

Proof. We refer the reader to A. Friedman [5] or L. Nirenberg [6] for the proof of
this well-known calculus inequality. ¤

Corollary 2.1. There exist positive constants C, C̃, and Ĉ such that for every
function u in W 1

2 ([0, 1])

(2.2) |u|4 ≤ C(|ux|
1
2
2 |u|

1
2
1 + |u|1).

(2.3) |u| 5
2
≤ C̃(|ux|

2
5
2 |u|

3
5
1 + |u|1).

(2.4) |u|2 ≤ Ĉ(|ux|
1
3
2 |u|

2
3
1 + |u|1),

Proof. n = 1, m = 1, r = 2, q = 1 satisfy the condition (ii) in Theorem 2.1. Letting
j = 0 in this case the necessary condition on p, a for inequality (2.1) becomes

(2.5) 1
p = j

n + a
(

1
r − m

n

)
+ (1− a)1

q = 1− 2
3a

From equation (2.5) if p = 4, then a = 1
2 , if p = 5

2 , then a = 2
5 , and if p = 2, then

a = 13. Therefore we have inequalities (2.2), (2.3), (2.4). ¤

Corollary 2.2. For every function u in W 2
2 ([0, 1])

(2.6) |ux|2 ≤ C(|uxx|
3
5
2 |u|

2
5
1 + |u|1).

Proof. m = 2, r = 2, q = 1 satisfy the condition (ii) in Theorem 2.1. ¤

Theorem 2.2 (Young’s Inequality). If a and b are nonnegative real numbers and p

and q are positive real numbers such that 1
p + 1

q = 1, then

ab ≤ ap

p
+

bq

q
.

The equality hold if and only if ap = bq.
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Theorem 2.3 (Hölder’s Inequality). If f, g : Rn → R are Lebesgue measurable and
p, q ∈ [1,∞] are real numbers such that 1

p + 1
q = 1, then

|fg|1 ≤ |f |p|g|q.

Lemma 2.1 below presents a few basic inequalities that will be used for the
computations in this paper.

Lemma 2.1. Let x ≥ 0, y ≥ 0. Then

(2.7) (x + y)2 ≥ 1
2x2 − y2

(2.8) xk ≤ xs + 1, if 0 < k ≤ s

(2.9) xk ≤ xs + xt, if 0 < t ≤ k ≤ s

(2.10) (x + y)k ≤ 2k−1(xk + yk), if k ≥ 1

(2.11) xk + yk ≤ 21−k(x + y)k, if 0 < k ≤ 1

Proof. Inequalities (2.7), (2.8), (2.9) are simply proved.
To show inequalities (2.10), (2.11), let g : [0,∞) → R, g(x) = 2k−1(xk + yk)− (x +
y)k. Then

g′(x) = k2k−1xk−1 − k(x + y)k−1.

Hence the function g(x) has the critical value 0 at x = y which is the minimum
value if k ≥ 1, and the maximum value if 0 < k ≤ 1. Thus we obtain inequalities
(2.10) and (2.11). ¤

Theorem 2.4 (Picard’s local existence and uniqueness theorem). If f(x, t) is a
continuous real-valued function that satisfies the Lipschitz condition

|f(x, t)− f(y, t)| ≤ L|x− y|
in some open rectangle R = {(x, t) | a < x < b, c < t < d} that contains the point
(x0, t0), then the initial value problem

x′ = f(x, t), x(t0) = x0

has a unique solution in some closed interval I = [t0 − ε, t0 + ε], where ε > 0.

Theorem 2.5. Let f(x) be a real-valued differentiable functions defined on an open
interval (a, b). Then for every initial point x0 in (a, b) a solution of the initial value
problem
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x′ = f(x), x(0) = x0

is either constant or strictly monotone.

Proof. The conclusion follow from the fact that f(x(t)) never changes sign for the
solution x(t) of the given initial value problem. To see why this is so, suppose that
x(t) is not a constant solution, and f(x(t)) changes sign. Then it would have to be
f(x(t1)) = 0 at some t1 > 0 and f(x(t)) 6= 0 for t in the left of t1 or right of t1. But
it contradict the fact that from Theorem 2.4 the constant solution y(t) ≡ x(t1) is a
unique solution in some closed interval [t1 − ε, t1 + ε], where ε > 0. ¤

Corollary 2.3. Let c1 > 0, p > 1, and c2, c3 be any real numbers. Then there exists
a positive constant M = M(x0, p, c1, c2, c3) such that the solution of the initial value
problem

x′ = −c1x
p + c2x + c3, x(0) = x0 ≥ 0

satisfies that

x(t) ≤ M for all t ≥ 0.

Proof. The function f(x) = −c1x
p + c2x + c3 is differentiable functions on R and

falls in either of the two cases:

case(a) f(x) ≤ 0 for all x ≥ 0

case(b) there exist a positive constant m = m(p, c1, c2, c3) such that f(m) = 0, f(x) >
0 for x in some interval on the left of m, and f(x) < 0 for all x > M .

In case (a) x′(0) = f(x0) ≤ 0, and thus by Theorem 2.5 x′(t) ≤ 0 for all t ≥ 0. Hence
x(t) ≤ x0 for all t ≥ 0. In case (b) if 0 < x0 < m then the solution x(t) cannot cross
the constant solution y(t) ≡ m by Theorem 2.5, and thus x(t) ≤ m for all t ≥ 0. If
x0 ≥ m then x′(0) = f(x0) ≤ 0, and thus by Theorem 2.5 x′(t) ≤ 0 for all t ≥ 0.
Hence x(t) ≤ x0 for all t ≥ 0. Therefore in any case there exists a positive constant
M = M(x0, p, c1, c2, c3) such that x(t) ≤ M for all t ≥ 0. ¤

Lemma 2.2 (Gronwall’s inequality and the Comparison Principle for differential
equations). Let a < b ≤ ∞, and ξ(t) and β(t) be real-valued continuous functions
defined on the interval [a, b]. If ξ(t) is differentiable in (a, b) and satisfies the differ-
ential inequality

ξ′(t) ≤ β(t)ξ(t), t ∈ (a, b),

then ξ(t) is bounded by the solution of the corresponding differential equation y′(t) =
β(t)y(t), y(a) = ξ(a), that is,
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ξ(t) ≤ ξ(a) exp
(∫ t

a
β(s) ds

)

for all t ∈ [a, b]. And it follows that if in addition ξ(a) ≤ 0, then ξ(t) ≤ 0 for all
t ∈ [a, b].

Proof. We refer the reader to [2]. ¤

Lemma 2.3. Let c1 > 0, p > 1, and c2, c3 be any real numbers. Suppose that two
differentiable functions φ(t) and x(t) satisfy

φ′ ≤ −c1φ
p + c2φ + c3, φ(0) = φ0

x′ = −c1x
p + c2x + c3, x(0) = φ0.

Then
φ(t) ≤ x(t) for all t ≥ 0.

And especially, if φ0 ≥ 0 then there exists a positive constant M = M(φ0, p, c1, c2, c3)
such that

φ(t) ≤ M for all t ≥ 0.

Proof. Let ξ = φ− x. Then

ξ′ = φ′ − x′
≤ −c1(φp − xp) + c2(φ− x)
= ξ(−c1η + c2),

where

η(t) =

{
φ(t)p−x(t)p

φ−x , if φ(t) 6= x(t)
pφ(t)p−1, if φ(t) = x(t)

Here notice that η(t) is a continuous function using the mean value theorem and
the continuities of φ(t) and x(t). Now, since ξ(0) = 0 we conclude that ξ(t) =
φ(t) − x(t) ≤ 0 for all t ≥ 0 from Lemma 2.2. And if φ0 ≥ 0, from Corollary 2.3
there exists a positive constant M = M(φ0, p, c1, c2, c3) such that x(t) ≤ M for all
t ≥ 0. Thus φ(t) ≤ M for all t ≥ 0. ¤

3. L1-bound of Solutions to (1.1)

Proof of Theorem 1.2. By taking integration over the interval [0, 1] for the first and
second equations in (1.1) we have that

d

dt

∫ 1

0
u(x, t) dx =

∫ 1

0
(a1u− b1u

2 + c1uv) dx

d

dt

∫ 1

0
v(x, t) dx =

∫ 1

0
(a2v − b2uv + c2v

2) dx,
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d

dt

∫ 1

0
(b2u + c1v) dx =

∫ 1

0
(a1b2u + a2c1v) dx−

∫ 1

0

(
b1b2u

2 − 2b2c1uv + c1c2v
2
)

dx.

Let δ =
b2c1(b1c2 − b2c1)

b1b2 + c1c2
. The condition b1c2 > b2c1 implies δ > 0. It also holds

that

δ =
b2c1(b1c2 − b2c1)

b1b2 + c1c2
< min {b1b2, c1c2} .

Thus it is shown that
∫ 1

0

(
b1b2u

2 − 2b2c1uv + c1c2v
2
)

dx− δ

∫ 1

0

(
u2 + v2

)
dx ≥ 0

from the facts

(3.1) (b2c1)
2− (b1b2 − δ) (c1c2 − δ) = −δ2 +(b1b2 + c1c2) δ− b2c1 (b1c2 − b2c1) < 0.

Using (3.1) we have

d

dt

∫ 1

0
(b2u + c1v) dx ≤

∫ 1

0
(a1b2u + a2c1v) dx− δ

∫ 1

0

(
u2 + v2

)
dx,

and thus

d

dt

∫ 1

0
(u + v) dx ≤ C1

∫ 1

0
(u + v) dx− C ′

0

∫ 1

0

(
u2 + v2

)
dx,

where C1 =
max{a1b2, a2c1}

min{b2, c1} , C ′
0 =

δ

min{b2, c1} . From Hölder’s inequality

∫ 1

0
u dx ≤

(∫ 1

0
u2 dx

) 1
2

,

∫ 1

0
v dx ≤

(∫ 1

0
v2 dx

) 1
2

,

it follows that

d

dt

∫ 1

0
(u + v)) dx ≤ C1

∫ 1

0
(u + v) dx− C ′

0

{(∫ 1

0
u dx

)2

+
(∫ 1

0
v dx

)2
}

,

and thus

(3.2)
d

dt

∫ 1

0
(u + v) dx ≤ C1

∫ 1

0
(u + v) dx− C0

{∫ 1

0
(u + v) dx

}2

,

where C0 =
C ′

0

2
. Hence by the Gronwall’s type inequailty in Lemma 2.3 there exists

positive constant M0 = M0 (‖u0‖1, ‖v0‖1, a1, a2, b1, b2, c1, c2) satisfying

(3.3)
∫ 1

0
u(x, t) dx ≤ M0,

∫ 1

0
v(x, t) dx ≤ M0

for all t ≥ 0. ¤
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4. L2-bound of Solutions to (1.1)

Proof of Theorem 1.3. Multiplying the first and second equations in (1.1) by u =
u(x, t) and v = v(x, t), respectively, and taking integrations over [0, 1] we have that

1
2

d

dt

∫ 1

0
u2 dx =

∫ 1

0
u(d1 u + α11u

2 + α12uv)xx dx +
∫ 1

0
u2(a1 − b1u + c1v) dx

1
2

d

dt

∫ 1

0
v2 dx =

∫ 1

0
v(d2 v + α21uv + α22v

2)xx dx +
∫ 1

0
v2(a2 − b2u + c2v) dx.

Using Neumann boundary conditions

1
2

d

dt

∫ 1

0
u2 dx =

∫ 1

0
u(d1 u + α11u

2 + α12uv)xx dx +
∫ 1

0
u2(a1 − b1u + c1v) dx

= −
∫ 1

0
ux(d1 u + α11u

2 + α12uv)x dx +
∫ 1

0
u2(a1 − b1u + c1v) dx

= −
∫ 1

0
ux(d1 ux + 2α11uux + α12vux + α12uvx) dx

+
∫ 1

0
u2(a1 − b1u + c1v) dx

= −
∫ 1

0
(d1 + 2α11u + α12v)u2

x dx−
∫ 1

0
α12uuxvx dx

+
∫ 1

0
u2(a1 − b1u + c1v) dx,

and similarly

1
2

d

dt

∫ 1

0
v2 dx = −

∫ 1

0
(d2 + 2α21u + α22v)v2

x dx−
∫ 1

0
α21vuxvx dx

+
∫ 1

0
v2(a2 + b2u− c2v) dx.

(4.1)
1
2

d

dt

∫ 1

0
(u2 + v2) dx

= −d1

∫ 1

0
u2

x dx− d2

∫ 1

0
v2
x dx

−
∫ 1

0

(
(2α11u + α12v)u2

x + (α12u + α21v)uxvx + (2α21u + α22v)v2
x

)
dx

+
∫ 1

0
u2(a1 − b1u + c1v) dx +

∫ 1

0
v2(a2 + b2u− c2v) dx,



84 Seong-A Shim

Using condition (1.3) that α2
12 < 8α11α21 and α2

21 < 8α12α22, we have

(α12u + α21v)2 − 4(2α11u + α12v)(2α21u + α22v)

= (α2
12 − 8α11α21)u2 − 2(α12α21 + 8α11α22)uv + (α2

21 − 8α12α22)v2 ≤ 0.

Thus it follows from (4.1) that
(4.2)
1
2

d

dt

∫ 1

0
(u2 + v2) dx ≤ −d1

∫ 1

0
u2

x dx− d2

∫ 1

0
v2
x dx

+
∫ 1

0
u2(a1 − b1u + c1v) dx +

∫ 1

0
v2(a2 + b2u− c2v) dx,

≤ −d1

∫ 1

0
u2

x dx− d2

∫ 1

0
v2
x dx

+a1

∫ 1

0
u2 dx + a2

∫ 1

0
v2 dx + c1

∫ 1

0
u2v dx + b2

∫ 1

0
uv2 dx.

By Young’s inequality
∫ 1

0
u2v dx ≤

∫ 1

0

1
2

(
εu4 +

1
ε
v2

)
dx,

∫ 1

0
uv2 dx ≤

∫ 1

0

1
2

(
εv4 +

1
ε
u2

)
dx

holds for any ε > 0. And by applying Lemma 2.1 to inequality (2.2) and using the
uniform L1-boundedness of u and v from Step 1, we have

∫ 1

0
u4 dx ≤ C

(∫ 2

0
u2

x dx + 1
)

,

∫ 1

0
v4 dx ≤ C

(∫ 2

0
v2
x dx + 1

)
,

where C is a positive constant depending only on ai, bi, ci (i, j = 1, 2). Thus (4.2)
becomes

1
2

d

dt

∫ 1

0
(u2 + v2) dx

≤ −d1

∫ 1

0
u2

x dx− d2

∫ 1

0
v2
x dx + a1

∫ 1

0
u2 dx + a2

∫ 1

0
v2 dx

+c1εC

(∫ 1

0
u2

x dx + 1
)

+
c1

2ε

∫ 1

0
v2 dx

+b2εC

(∫ 1

0
v2
x dx + 1

)
+

b2

2ε

∫ 1

0
u2 dx

≤ −d1

2

∫ 1

0
u2

x dx− d2

2

∫ 1

0
v2
x dx + C ′

1

∫ 1

0

(
u2 + v2

)
dx + C ′

0,

where ε = 1
C min{ d1

2c1
, d2

2b2
} and the constants C ′

0 and C ′
1 are depending on di, ai,

bi, ci (i, j = 1, 2). And by applying Lemma 2.1 to inequality (2.4) and using the
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uniform L1-boundedness of u and v from Step 1, we have
(∫ 1

0
u2 dx

)3

≤ C̃

(∫ 2

0
u2

x dx + 1
)

,

(∫ 1

0
v2 dx

)3

≤ C̃

(∫ 2

0
v2
x dx + 1

)
,

where C̃ is a positive constant depending only on ai, bi, ci (i, j = 1, 2). And thus

−
∫ 1

0
u2

x dx ≤ 1− C ′
(∫ 1

0
u2 dx

)3

, −
∫ 1

0
v2
x dx ≤ 1− C ′

(∫ 1

0
v2 dx

)3

,

where C ′ is a positive constant depending only on ai, bi, ci (i, j = 1, 2). Thus we
have

(4.3)

1
2

d

dt

∫ 1

0
(u2 + v2) dx

≤ −C ′
2

(∫ 1

0
u2 dx

)3

− C ′
2

(∫ 1

0
v2 dx

)3

+ C ′
1

∫ 1

0

(
u2 + v2

)
dx + C ′′

0

≤ −C2

(∫ 1

0
(u2 + v2) dx

)3

+ C1

∫ 1

0

(
u2 + v2

)
dx + C0

by Lemma 2.1, where C0, C1, C2 are positive constants di, ai, bi, ci (i, j = 1, 2).
Hence by the Gronwall’s type inequailty in Lemma 2.3 we obtain the following L2-
bound of u and v such that

(4.4)
∫ 1

0
(u2 + v2) dx ≤ M1 for all t ≥ 0,

where M1 is a positive constant depending on ‖u0‖2, ‖v0‖2, di, ai, bi, ci (i, j =
1, 2). ¤

5. W1,2-bound of Solutions to (1.1)

Proof of Theorem 1.4. To obtain uniform bounds of |ux|2 and |vx|2 for the solution
of (1.1) let us denote that

P = d1u + α11u
2 + α12uv, Q = d2v + α21uv + α22v

2.

We would show the uniform boundedness of |Px|2 and |Px|2 and then obtain the
uniform bounds of |ux|2 and |vx|2 from it. Here we note from Theorem 1.1 that
P,Q ∈ C([0, T ),W 1

2 ([0, 1])) ∩ C∞([0, 1]× (0, T )) for 0 ≤ t < T , and
∫ 1

0
Ptut dx =

∫ 1

0
(d1ut + 2α11uut + α12utv + α12uvt)ut dx

=
∫ 1

0

[
(d1 + 2α11u + α12v)u2

t + α12uutvt

]
dx
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∫ 1

0
Qtvt dx =

∫ 1

0
(d2vt + α21utv + α21uvt + 2α22vut)vt dx

=
∫ 1

0

[
(d2 + α21u + 2α22v)v2

t + α21vutvt

]
dx,

∫ 1

0
PtPxx dx = −

∫ 1

0
PxtPx dx = −1

2
d

dt

∫ 1

0
P 2

x dx,
∫ 1

0
QtQxx dx = −

∫ 1

0
QxtQx dx = −1

2
d

dt

∫ 1

0
Q2

x dx

from the Neumann boundary conditions on u, v. Now, multiplying the first equation
in (1.1) by Pt and the second equation by Qt, we have
∫ 1

0

[
(d1 + 2α11u + α12v)u2

t + α12uutvt

]
dx

= −1
2

d

dt

∫ 1

0
P 2

x dx

+
∫ 1

0

[
u(d1 + 2α11u + α12v)(a1 − b1u + c1v)ut + α12u

2(a1 − b1u + c1v)vt

]
dx,

∫ 1

0

[
(d2 + α21u + 2α22v)v2

t + α21vutvt

]
dx

= −1
2

d

dt

∫ 1

0
Q2

x dx

+
∫ 1

0

[
v(d2 + α21u + 2α22v)(a2 + b2u− c2v)vt + α21v

2(a2 + b2u− c2v)ut

]
dx,

and thus

(5.1)

1
2

d

dt

∫ 1

0
(P 2

x + Q2
x) dx

≤ −d1

∫ 1

0
u2

t dx− d2

∫ 1

0
v2
t dx

−
∫ 1

0

[
(2α11u + α12v)u2

t + (α12u + α21v)utvt + (α21u + 2α22v)v2
t

]
dx

+C1

∫ 1

0

(
u + v + u2 + uv + v2 + u3 + u2v + uv2 + v3

)
(|ut|+ |vt|) dx,

where C1 is a positive constant depending on di, αij , ai, bi, ci (i, j = 1, 2). Here we
notice from the condition (1.3) that there exists a positive constant λ = λ(αi,j , i, j =
1, 2) satisfying

(2α11u + α12v)u2
t + (α12u + α21v)utvt + (α21u + 2α22v)v2

t ≥ λ(u + v)(u2
t + v2

t ),
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since

(α12u + α21v)2 − 4(2α11u + α12v − λu− λv)(α21u + 2α22v − λu− λv)
= (α2

12 − 8α11α21)u2 − 2(α12α21 + 8α11α22)uv + (α2
21 − 8α12α22)v2

+4λ
[
(2α11 + α21)u2 + (2α11 + α12 + α21 + 2α22)uv + (α12 + 2α22)v2

]
−4λ2(u + v)2 ≤ 0

for all u ≥ 0, v ≥ 0, if λ = λ(αij , i, j = 1, 2) > 0 is small enough.
The terms

∫ 1
0 u2

t dx,
∫ 1
0 v2

t dx in (5.1) ae estimated in terms of P and Q from
inequality (2.7) in lemma 2.1.

−
∫ 1

0
u2

t dx = −
∫ 1

0
[Pxx + u(a1 − b1 + c1v)]2 dx

≤ −1
2

∫ 1

0
P 2

xx dx +
∫ 1

0
u2(a1 − b1 + c1v)2 dx,

−
∫ 1

0
v2
t dx = −

∫ 1

0
[Qxx + v(a2 + b2u− c2v)]2 dx

≤ −1
2

∫ 1

0
Q2

xx dx +
∫ 1

0
v2(a2 + b2u− c2v)2 dx.

Now we observe using Young’s inequality that
∣∣∣∣
∫ 1

0
uut dx

∣∣∣∣ =
∣∣∣∣
∫ 1

0
u

1
2

(
u

1
2 ut

)
dx

∣∣∣∣ ≤
1
2ε

∫ 1

0
u dx +

ε

2

∫ 1

0
uu2

t dx

hold for any ε > 0. Similar estimates are applied to the terms
∫ 1
0 uvt dx,

∫ 1
0 vut dx,∫ 1

0 vut dx,
∫ 1
0 u2ut dx,

∫ 1
0 v2ut dx, and so on. Using these inequalities and inequalities

(2.8), (2.9) in lemma 2.1 we obtain that

C1

∫ 1

0

(
u + v + u2 + uv + v2 + u3 + u2v + uv2 + v3

)
(|ut|+ |vt|) dx

+d1

∫ 1

0
u2(a1 − b1 + c1v)2 dx + d2

∫ 1

0
v2(a2 + b2u− c2v)2 dx

≤ C2

∫ 1

0

(
u + v + u3 + v3

)
(|ut|+ |vt|) dx

+d1

∫ 1

0
u2(a1 − b1 + c1v)2 dx + d2

∫ 1

0
v2(a2 + b2u− c2v)2 dx

≤ C3

2ε

∫ 1

0

(
u + v + u5 + u4v + u3v2 + u2v3 + uv4 + v5

)
dx

+
εC3

2

∫ 1

0
(u + v)

(
u2

t + v2
t

)
dx + d1

∫ 1

0
u2(a1 − b1 + c1v)2 dx

+d2

∫ 1

0
v2(a2 + b2u− c2v)2 dx

≤
(

C3

2ε
+ C4

)∫ 1

0

(
1 + u5 + v5

)
dx +

εC3

2

∫ 1

0
(u + v)

(
u2

t + v2
t

)
dx,
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where C2, C3, C4 are positive constant depending on di, αij , ai, bi, ci (i, j = 1, 2).
Thus we have

1
2

d

dt

∫ 1

0
(P 2

x + Q2
x) dx

≤ −d1

2

∫ 1

0
P 2

xx dx− d2

2

∫ 1

0
Q2

xx dx− λ

∫ 1

0
(u + v)(u2

t + v2
t ) dx

+
(

C3

2ε
+ C4

)∫ 1

0

(
1 + u5 + v5

)
dx +

εC3

2

∫ 1

0
(u + v)

(
u2

t + v2
t

)
dx

for any ε > 0. Here we choose a small ε > 0 so that εC3
2 ≤ λ, and thus

(5.2)
1
2

d

dt

∫ 1

0
(P 2

x + Q2
x) dx ≤ −d1

2

∫ 1

0
P 2

xx dx− d2

2

∫ 1

0
Q2

xx dx + C5

∫ 1

0

(
1 + u5 + v5

)
dx

where C5 is a positive constants depending on di, αij , ai, bi, ci (i, j = 1, 2). Now we
observe that

P = d1u + α11u
2 + α12uv ≥ α11u

2, Q = d2v + α21uv + α22v
2 ≥ α22v

2,

and thus ∫ 1

0
(u5 + v5) dx ≤ C6

∫ 1

0
(P

5
2 + Q

5
2 ) dx,

where C6 is a positive constant depending only on di, αij , ai, bi, ci (i, j = 1, 2).
Applying the inequalities (2.6) and (2.3) to the function P = d1u + α11u

2 + α12uv

we have

|Px|2 ≤ C̃

(
|Pxx|

3
5
2 |P |

2
5
1 + |P |1

)
≤ C̃|P |

2
5
1

(
|Pxx|

3
5
2 + |P |

3
5
1

)
,

|P | 5
2
≤ Ĉ

(
|Px|

2
5
2 |P |

3
5
1 + |P |1

)
.

Here using the uniform boundedness of the L1 norm of P , we have

(5.3) −
∫ 1

0
P 2

xx dx ≤ C7 − C8

(∫ 1

0
P 2

x dx

) 5
3

,

(5.4)
∫ 1

0
P

5
2 dx ≤ C9

(∫ 1

0
P 2

x dx

) 1
2

+ C10

where C7, C8, C9, C10 are positive constants depending on di, αij , ai, bi, ci (i, j =
1, 2). Similar estimates are obtained also for Q. Hence we have
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(5.5)

1
2

d

dt

∫ 1

0
(P 2

x + Q2
x) dx

≤ −C11

(∫ 1

0
(P 2

x + Q2
x) dx

) 5
3

+ C12

(∫ 1

0
(P 2

x + Q2
x) dx

) 1
2

+ C13,

where C11, C12, C13 are positive constants depending on di, αij , ai, bi, ci (i, j = 1, 2).
Hence by the Gronwall’s type inequailty in Lemma 2.3 we obtain the following W1,2-
bound of P and Q such that

(5.6)
∫ 1

0
P 2

x dx < M̃2,

∫ 1

0
Q2

x dx < M̃2 for all t ≥ 0,

where M̃2 is a positive constant depending on ‖u0‖2, ‖v0‖2, di, αij , ai, bi, ci (i, j =
1, 2).

In order to obtain estimates for ux and vx, we notice that
(

ux

vx

)
=

(
Pu Pv

Qu Qv

)−1 (
Px

Qx

)
= A−1

(
Px

Qx

)
,

where

A =
(

d1 + 2α11u + α12v α12u
α21v d2 + α21u + 2α22v

)
.

Here we note that |A|, the determinant of A, is bounded below by the positive
constant d1d2, and |A| is of class O(u2 + v2) as u → ∞ and v → ∞, we have the
inequality

|ux|+ |vx| ≤ C14 (|Px|+ |Qx|) for every x ∈ [0, 1]× [0,∞)

for some constant C14 depending only on di, αij , (i, j = 1, 2). Therefore we obtain
the following W1,2-bound of u and v such that

∫ 1

0
u2

x dx < M2,

∫ 1

0
v2
x dx < M2 for all t ≥ 0,

where M2 is a positive constant depending on ‖u0‖2, ‖v0‖2, di, αij , ai, bi, ci (i, j =
1, 2). ¤
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