CHARACTERIZATION OF A REGULAR FUNCTION WITH VALUES IN DUAL QUATERNIONS

Ji Eun Kim ${ }^{\text {a }}$ and Kwang Ho Shon ${ }^{\text {b,* }}$

Abstract

In this paper, we provide the notions of dual quaternions and their algebraic properties based on matrices. From quaternion analysis, we give the concept of a derivative of functions and and obtain a dual quaternion Cauchy-Riemann system that are equivalent. Also, we research properties of a regular function with values in dual quaternions and relations derivative with a regular function in dual quaternions.

1. Introduction

Let \mathcal{T} be the set of quaternion numbers constructed over a real Euclidean quadratic four dimensional vector space. In 2004 and 2006, Kajiwara, Li and Shon [2, 3] obtained some results for the regeneration in complex, quaternion and Clifford analysis, and for the inhomogeneous Cauchy-Riemann system of quaternions and Clifford analysis in ellipsoid. Naser [12] and Nôno [13] obtained some properties of quaternionic hyperholomorphic functions. In 2011, Koriyama, Mae and Nôno [8, 9] researched for hyperholomorphic functions and holomorphic functions in quaternion analysis. Also, they obtained some results of regularities of octonion functions and holomorphic mappings. In 2012, Gotô and Nôno [1] researched for regular functions with values in a commutative subalgebra $\mathbb{C}(\mathbb{C})$ of matrix algebra $\mathrm{M}(4 ; \mathbb{R})$. Lim and Shon $[10,11]$ obtained some properties of hyperholomorphic functions and researched for the hyperholomophic functions and hyperconjugate harmonic functions of octonion variables, and for the dual quaternion functions and its applications. Recently, we $[4,5,6,7]$ obtained some results for the regularity of functions on the ternary quaternion and reduced quaternion field in Clifford analysis, and for the regularity of functions on dual split quaternions in Clifford analysis. Also, we

[^0]investigated the corresponding Cauchy-Riemann systems in special quaternions and properties of each regular functions defined by the corresponding differential operators in special quaternions.

The aim of the paper is to define the representations of dual quaternions, written by a matrix form. Also, we research the conditions of the derivative of functions with values in dual quaternions and the definition of a regular function for CauchyRiemann system in dual quaternions.

2. Preliminaries

The field \mathcal{T} of quaternions

$$
z=x_{0}+e_{1} x_{1}+e_{2} x_{2}+e_{3} x_{3}, x_{j} \in \mathbb{R}(j=0,1,2,3)
$$

is a four dimensional non-commutative real field such that its four base elements $e_{0}=1, e_{1}, e_{2}$ and e_{3} satisfying the following :

$$
e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1, e_{1} e_{2}=-e_{2} e_{1}=e_{3}, e_{2} e_{3}=-e_{3} e_{2}=e_{1}, e_{3} e_{1}=-e_{1} e_{3}=e_{2}
$$

The element $e_{0}=1$ is the identity of \mathcal{T}. Identifying the element e_{1} with the imaginary unit $\sqrt{-1}$ in the complex field of complex numbers. The dual numbers extended the real numbers by adjoining one new non-zero element ε with the property $\varepsilon^{2}=0$. The collection of dual numbers forms a particular two-dimensional commutative unital associative algebra over the real numbers. Every dual number has the form $z=x+\varepsilon y$ with x and y uniquely determined real numbers. Dual numbers form the coefficients of dual quaternions. If we use matrices, dual numbers can be represented as

$$
\varepsilon=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), a+b \varepsilon=\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) .
$$

The sum and product of dual numbers are then calculated with ordinary matrix addition and matrix multiplication; both operations are commutative and associative within the algebra of dual numbers.

3. Dual Quaternions

The algebra

$$
\mathbb{D C}(2)=\left\{Z=z+\varepsilon w \mid z=\sum_{i=0}^{3} e_{j} x_{j}, w=\sum_{i=0}^{3} e_{j} y_{j} \in \mathcal{T}\right\} \cong \mathcal{T} \times \mathcal{T},
$$

where $x_{j}, y_{j} \in \mathbb{R}(j=0,1,2,3)$, is a non-commutative subalgebra of $M^{2}(2 ; \mathbb{C})$.

We define that the dual quaternionic multiplication of two dual quaternions

$$
Z_{1}=z_{1}+\varepsilon w_{1}=\left(\begin{array}{cc}
z_{1} & w_{1} \\
0 & z_{1}
\end{array}\right)=\left(\begin{array}{cc}
\sum_{j=0}^{3} e_{j} x_{j} & \sum_{j=0}^{3} e_{j} y_{j} \\
0 & \sum_{j=0}^{3} e_{j} x_{j}
\end{array}\right)
$$

and

$$
Z_{2}=z_{2}+\varepsilon w_{2}=\left(\begin{array}{cc}
z_{2} & w_{2} \\
0 & z_{2}
\end{array}\right)=\left(\begin{array}{cc}
\sum_{j=0}^{3} e_{j} \xi_{j} & \sum_{j=0}^{3} e_{j} \eta_{j} \\
0 & \sum_{j=0}^{3} e_{j} \xi_{j}
\end{array}\right)
$$

is given by

$$
\begin{aligned}
& Z_{1} Z_{2}=\left(\begin{array}{cc}
z_{1} z_{2} & z_{1} w_{2}+w_{1} z_{2} \\
0 & z_{1} z_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(\sum_{j=0}^{3} e_{j} x_{j}\right) \cdot\left(\sum_{j=0}^{3} e_{j} \xi_{j}\right) & \begin{array}{c}
\left(\sum_{j=0}^{3} e_{j} x_{j}\right) \cdot\left(\sum_{j=0}^{3} e_{j} \eta_{j}\right) \\
+\left(\sum_{j=0}^{3} e_{j} y_{j}\right) \cdot\left(\sum_{j=0}^{3} e_{j} \xi_{j}\right) \\
0
\end{array} \\
\left(\sum_{j=0}^{3} e_{j} x_{j}\right) \cdot\left(\sum_{j=0}^{3} e_{j} \xi_{j}\right)
\end{array}\right)
\end{aligned}
$$

The dual quaternionic conjugate Z^{*} of Z is

$$
Z^{*}=\left(\begin{array}{cc}
z^{*} & w^{*} \\
0 & z^{*}
\end{array}\right)=\left(\begin{array}{cc}
x_{0}-\sum_{j=1}^{3} e_{j} x_{j} & y_{0}-\sum_{j=1}^{3} e_{j} y_{j} \\
0 & x_{0}-\sum_{j=1}^{3} e_{j} x_{j}
\end{array}\right)
$$

Then the modulus $|Z|$ and the inverse Z^{-1} of Z in $\mathbb{D C}(2)$ are defined by the following :

$$
|Z|^{2}=Z Z^{*}=\left(\begin{array}{cc}
z z^{*} & z w^{*}+w z^{*} \\
0 & z z^{*}
\end{array}\right)=\left(\begin{array}{cc}
\sum_{j=0}^{3} x_{j}^{2} & 2 \sum_{j=0}^{3} x_{j} y_{j} \\
0 & \sum_{j=0}^{3} x_{j}^{2}
\end{array}\right)
$$

and

$$
Z^{-1}=\frac{Z^{*}}{|Z|^{2}}(Z \neq 0)
$$

By using the multiplication of $Z \in \mathbb{D} \mathbb{C}(2)$, the power of Z is for $n \in \mathbb{N}$,

$$
Z^{n}=(z+\varepsilon w)^{n}=\left(\begin{array}{cc}
z & w \\
0 & z
\end{array}\right)^{n}=\left(\begin{array}{cc}
z^{n} & \sum_{k=1}^{n} z^{n-k} w z^{k-1} \\
0 & z^{n}
\end{array}\right)
$$

and the division of two $Z, W \in \mathbb{D} \mathbb{C}(2)$ can be computed as

$$
\frac{Z_{1}}{Z_{2}}=\frac{z_{1}+\varepsilon w_{1}}{z_{2}+\varepsilon w_{2}}=\frac{z_{1}+\varepsilon w_{1}}{z_{2}+\varepsilon w_{2}} \frac{z_{2}^{*}+\varepsilon w_{2}^{*}}{z_{2}^{*}+\varepsilon w_{2}^{*}}=\frac{z_{1} z_{2}^{*}+\varepsilon\left(z_{1} w_{2}^{*}+w_{1} z_{2}^{*}\right)}{z_{2} z_{2}^{*}+\varepsilon\left(z_{2} w_{2}^{*}+w_{2} z_{2}^{*}\right)} .
$$

Since $z_{2} z_{2}^{*}$ and $z_{2} w_{2}^{*}+w_{2} z_{2}^{*}$ are real variables, it can be written by

$$
\begin{aligned}
\frac{Z_{1}}{Z_{2}} & =\frac{1}{M^{2}}\left\{z_{1} z_{2}^{*} M+\varepsilon\left(-z_{1} z_{2}^{*} N+z_{1} w_{2}^{*} M+w_{1} z_{2}^{*} M\right)\right\} \\
& =\frac{z_{1}}{z_{2}}+\varepsilon\left(\frac{z_{1} w_{2}^{*}}{z_{2} z_{2}^{*}}+\frac{w_{1}}{z_{2}}-\frac{z_{1} w_{2}^{*}}{z_{2} z_{2}^{*}}\right)=\frac{Z_{1}}{z_{2}}=\left(\begin{array}{cc}
\frac{z_{1}}{z_{2}} & \frac{w_{1}}{z_{2}} \\
0 & \frac{z_{1}}{z_{2}}
\end{array}\right),
\end{aligned}
$$

where $M:=z_{2} z_{2}^{*}$ and $N:=z_{2} w_{2}^{*}+w_{2} z_{2}^{*}$.
We use the following differential operators :

$$
\begin{aligned}
D & :=D_{z}+\varepsilon D_{w}=\left(\begin{array}{cc}
D_{z} & D_{w} \\
0 & D_{z}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\partial}{\partial z_{1}}+e_{2} \frac{\partial}{\partial z_{2}} & \frac{\partial}{\partial w_{1}}+e_{2} \frac{\partial}{\partial w_{2}} \\
0 & \frac{\partial}{\partial z_{1}}+e_{2} \frac{\partial}{\partial z_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sum_{j=0}^{3} e_{j} \frac{\partial}{\partial x_{j}} & \sum_{j=0}^{3} e_{j} \frac{\partial}{\partial y_{j}} \\
0 & \sum_{j=0}^{3} e_{j} \frac{\partial}{\partial x_{j}}
\end{array}\right), \\
D^{*} & =D_{z}^{*}+\varepsilon D_{w}^{*}=\left(\begin{array}{cc}
D_{z}^{*} & D_{w}^{*} \\
0 & D_{z}^{*}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\partial}{\partial z_{1}}-e_{2} \frac{\partial}{\partial z_{2}} & \frac{\partial}{\partial w_{1}}-e_{2} \frac{\partial}{\partial w_{2}} \\
0 & \frac{\partial}{\partial z_{1}}-e_{2} \frac{\partial}{\partial z_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{\partial}{\partial x_{0}}-\sum_{j=1}^{3} e_{j} \frac{\partial}{\partial x_{j}} & \frac{\partial}{\partial y_{0}}-\sum_{j=1}^{3} e_{j} \frac{\partial}{\partial y_{j}} \\
0 & \frac{\partial}{\partial x_{0}}-\sum_{j=1}^{3} e_{j} \frac{\partial}{\partial x_{j}}
\end{array}\right),
\end{aligned}
$$

where $\frac{\partial}{\partial z_{k}}, \frac{\partial}{\partial \overline{z_{k}}}, \frac{\partial}{\partial w_{k}}, \frac{\partial}{\partial \overline{w_{k}}}(k=1,2)$ are usual complex differential operations.
The Laplacian operator is

$$
|D|^{2}=D D^{*}=\left(\begin{array}{cc}
D_{z} D_{z}^{*} & D_{z} D_{w}^{*}+D_{w} D_{z}^{*} \\
0 & D_{z} D_{z}^{*}
\end{array}\right)=\left(\begin{array}{cc}
\sum_{j=0}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}} & 2 \sum_{j=0}^{3} \frac{\partial^{2}}{\partial x_{j} \partial y_{j}} \\
0 & \sum_{j=0}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}}
\end{array}\right)
$$

Let S be a bounded open subset in $\mathcal{T} \times \mathcal{T}$. A function $F(Z)$ is defined by the following form in S with values in $\mathrm{M}(2 ; \mathbb{C})$:

$$
\begin{aligned}
F(Z) & =F(z+\varepsilon w)=f(z, w)+\varepsilon g(z, w) \\
& =\left(\begin{array}{cc}
f(z, w) & g(z, w) \\
0 & f(z, w)
\end{array}\right)=\left(\begin{array}{cc}
f_{1}+f_{2} e_{2} & g_{1}+g_{2} e_{2} \\
0 & f_{1}+f_{2} e_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sum_{j=0}^{3} e_{j} u_{j} & \sum_{j=0}^{3} e_{j} v_{j} \\
0 & \sum_{j=0}^{3} e_{j} u_{j}
\end{array}\right)
\end{aligned}
$$

where $u_{j}=u_{j}\left(x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right)$ and $v_{j}=v_{j}\left(x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right)$ are real valued functions.

Remark 3.1. Using differential operators, we have the following equations:

$$
\begin{aligned}
& D F=\left(\begin{array}{cc}
D_{z} f & D_{z} g+D_{w} f \\
0 & D_{z} f
\end{array}\right), D^{*} F=\left(\begin{array}{cc}
D_{z}^{*} f & D_{z}^{*} g+D_{w}^{*} f \\
0 & D_{z}^{*} f
\end{array}\right), \\
& F D=\left(\begin{array}{cc}
f D_{z}^{*} & f D_{w}+g D_{z} \\
0 & f D_{z}
\end{array}\right), F D^{*}=\left(\begin{array}{cc}
f D_{z}^{*} & f D_{w}^{*}+g D_{z}^{*} \\
0 & f D_{z}^{*}
\end{array}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& D_{z} f=\left(\frac{\partial f_{1}}{\partial \overline{z_{1}}}-\frac{\partial \overline{f_{2}}}{\partial \overline{z_{2}}}\right)+\left(\frac{\partial \overline{f_{1}}}{\partial \overline{z_{2}}}+\frac{\partial f_{2}}{\partial \overline{z_{1}}}\right) e_{2}, D_{z}^{*} f=\left(\frac{\partial f_{1}}{\partial z_{1}}+\frac{\partial \overline{f_{2}}}{\partial \overline{z_{2}}}\right)+\left(\frac{\partial f_{2}}{\partial z_{1}}-\frac{\partial \overline{f_{1}}}{\partial \overline{z_{2}}}\right) e_{2}, \\
& f D_{z}=\left(\frac{\partial f_{1}}{\partial \overline{z_{1}}}-\frac{\partial f_{2}}{\partial z_{2}}\right)+\left(\frac{\partial f_{1}}{\partial \overline{z_{2}}}+\frac{\partial f_{2}}{\partial z_{1}}\right) e_{2}, f D_{z}^{*}=\left(\frac{\partial f_{1}}{\partial z_{1}}+\frac{\partial f_{2}}{\partial z_{2}}\right)+\left(\frac{\partial f_{2}}{\partial \overline{z_{1}}}-\frac{\partial f_{1}}{\partial \overline{z_{2}}}\right) e_{2} .
\end{aligned}
$$

Definition 3.2. Let S be a bounded open subset in $\mathcal{T} \times \mathcal{T}$. A function $F=f+\varepsilon g$ is said to be M-regular in S if f and g of F are continuously differential quaternion valued functions in S such that $D^{*} F=0$.

Remark 3.3. The equation $D^{*} F=0$ is equivalent to

$$
D_{z}^{*} f=0, D_{z}^{*} g+D_{w}^{*} f=0
$$

Also, it is equivalent to

$$
\left\{\begin{array}{l}
\frac{\partial f_{1}}{\partial z_{1}}=-\frac{\partial \overline{f_{2}}}{\partial \overline{z_{2}}}, \frac{\partial f_{2}}{\partial z_{1}}=\frac{\partial \overline{f_{1}}}{\partial \overline{z_{2}}}, \tag{3.1}\\
\frac{\partial f_{1}}{\partial w_{1}}+\frac{\partial g_{1}}{\partial z_{1}}=-\frac{\partial \overline{f_{2}}}{\partial \overline{w_{2}}}-\frac{\partial \overline{g_{2}}}{\partial \overline{z_{2}}}, \\
\frac{\partial f_{2}}{\partial w_{1}}+\frac{\partial g_{2}}{\partial z_{1}}=\frac{\partial \overline{f_{1}}}{\partial \overline{w_{2}}}+\frac{\partial \overline{g_{1}}}{\partial \overline{z_{2}}}
\end{array}\right.
$$

The above system is called a dual quaternion Cauchy-Riemann system in dual quaternions.

Let Ω be an open subset of $\mathbb{D C}(2)$, for $Z_{0}=z_{0}+\varepsilon w_{0} \in \Omega$,

$$
F: \Omega \rightarrow \mathbb{D} \mathbb{C}(2)
$$

is called a dual-quaternion function in $\mathbb{D C}(2)$.
Definition 3.4. A function F is said to be continuous at $Z_{0}=z_{0}+\varepsilon w_{0}$ if

$$
\lim _{Z \rightarrow Z_{0}} F(Z)=F\left(Z_{0}\right),
$$

where the limit has

$$
\lim _{Z \rightarrow Z_{0}} F(Z)=\lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} F(Z)=F\left(Z_{0}\right) .
$$

Definition 3.5. The dual quaternion function F is said to be differentiable in dual quaternions if the limit

$$
\frac{d F}{d Z}:=\lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{F(Z)-F\left(Z_{0}\right)}{Z-Z_{0}}
$$

exists and the limit is called the derivative of F in dual quaternions.
Remark 3.6. From the definition of derivative of f and properties of differential operations of quaternion valued functions, we have

$$
\begin{align*}
\frac{\partial f}{\partial z} & :=\lim _{z \rightarrow z_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{z-z_{0}} \\
& =\sum_{r=0}^{3} e_{r} \lim _{x_{r} \rightarrow x_{r}^{0}} \frac{u_{r}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)-u_{r}\left(x_{0}^{0}, x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)}{x_{r}-x_{r}^{0}}=\sum_{r=0}^{3} e_{r} \frac{\partial u_{r}}{\partial x_{r}}, \tag{3.2}
\end{align*}
$$

where $\left(z_{0}, w_{0}\right)=\left(x_{0}^{0}, x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$ is a constant in a domain of f (see $\left.[2,11]\right)$. Since the equation (3.2) is equivalent to $D_{z} f$, we can express $\frac{\partial f}{\partial z}=D_{z} f$. Hence, by the
representations of $D F$ and properties of limit, calculating the division for $\frac{F(Z)-F\left(Z_{0}\right)}{Z-Z_{0}}$,

$$
\begin{aligned}
\frac{d F}{d Z} & =\frac{\partial f}{\partial z}+\varepsilon \frac{\partial g}{\partial z}+\varepsilon_{z \rightarrow z_{0}, w \rightarrow w_{0}} \lim \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{\left(z-z_{0}\right)^{2}}\left(w-w_{0}\right) \\
& =\left(\begin{array}{cc}
\frac{\partial f}{\partial z} & \frac{\partial g}{\partial z} \\
0 & \frac{\partial f}{\partial z}
\end{array}\right)+\varepsilon_{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{z-z_{0}}\left(\frac{w-w_{0}}{z-z_{0}}\right)^{2} \\
& =\left(\begin{array}{cc}
D_{z} f & D_{z} g \\
0 & D_{z} f
\end{array}\right)+\left(\begin{array}{cc}
0 & \frac{\partial f}{\partial w} \\
0 & 0
\end{array}\right)=D F .
\end{aligned}
$$

Therefore, we can represent $\frac{\partial F}{\partial Z}=D F$.
Theorem 3.7. Let $F=f+\varepsilon g$ be a dual quaternion function in $\Omega \subset \mathbb{D} \mathbb{C}(2)$. If F satisfies the equation $D f=0$, then the derivative of F satisfies the following equation:

$$
\frac{d F}{d Z}:=\lim _{Z \rightarrow Z_{0}} \frac{F(Z)-F\left(Z_{0}\right)}{Z-Z_{0}}=D_{z} F
$$

Proof. By the division of dual quaternions, we have

$$
\begin{aligned}
\frac{F(Z)-F\left(Z_{0}\right)}{Z-Z_{0}}= & \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{z-z_{0}}+\varepsilon \frac{g(z, w)-g\left(z_{0}, w_{0}\right)}{z-z_{0}} \\
& +\varepsilon \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{\left(z-z_{0}\right)^{2}}\left(w-w_{0}\right)
\end{aligned}
$$

Then, the limit

$$
\begin{aligned}
& \lim _{Z \rightarrow Z_{0}} \frac{F(Z)-F\left(Z_{0}\right)}{Z-Z_{0}} \\
= & \lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{z-z_{0}}+\varepsilon_{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{g(z, w)-g\left(z_{0}, w_{0}\right)}{z-z_{0}} \\
& +\varepsilon_{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{\left(z-z_{0}\right)^{2}}\left(w-w_{0}\right) \\
= & \frac{\partial f}{\partial z}+\varepsilon \frac{\partial g}{\partial z}-\varepsilon_{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{\left(z-z_{0}\right)^{2}}\left(w-w_{0}\right) \\
= & D_{z} F+\varepsilon_{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{z-w_{0}} \frac{w-z_{0}}{z-z_{0}} \\
= & D_{z} F+\varepsilon_{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{w-w_{0}}\left(\frac{w-w_{0}}{z-z_{0}}\right)^{2}
\end{aligned}
$$

exists if and only if $\frac{w-w_{0}}{z-z_{0}}$ has two cases to deal with
Case 1)

$$
\lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{\left(z-z_{0}\right)^{2}}\left(w-w_{0}\right)=\lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{z-z_{0}} \frac{w-w_{0}}{z-z_{0}} .
$$

If

$$
\lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{z-z_{0}}=0
$$

then the limit exists and the derivative can be written by

$$
\frac{d f\left(Z_{0}\right)}{d Z}=\varepsilon \frac{\partial g\left(z_{0}, w_{0}\right)}{\partial z}
$$

Case 2)
$\lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{\left(z-z_{0}\right)^{2}}\left(w-w_{0}\right)=\lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{w-w_{0}}\left(\frac{w-w_{0}}{z-z_{0}}\right)^{2}$.
If

$$
\lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{w-w_{0}}=0
$$

then the limit exists and the derivative can be written by

$$
\frac{d f\left(Z_{0}\right)}{d Z}=D_{z} F
$$

Therefore, the equation $\frac{d F}{d Z}=D_{z} F$ is obtained.
Theorem 3.8. Let $F=f+\varepsilon g$ be a dual quaternion function in $\Omega \subset \mathbb{D} \mathbb{C}(2)$. If F is a M-regular function in dual quaternions, that is, F satisfies the equation $D^{*} F=0$, then the derivative of F satisfies the following equation:

$$
\frac{d F}{d Z}=D F=\frac{\partial F}{\partial x_{0}}
$$

Proof. From the proof of Theorem 3.7, we have

$$
\begin{aligned}
\frac{d F\left(Z_{0}\right)}{d Z} & =D_{z} F+\varepsilon \lim _{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{z-z_{0}} \frac{w-w_{0}}{z-z_{0}} \\
& =D_{z} F+\varepsilon \varepsilon_{z \rightarrow z_{0}, w \rightarrow w_{0}} \frac{f(z, w)-f\left(z_{0}, w_{0}\right)}{w-w_{0}}\left(\frac{w-w_{0}}{z-z_{0}}\right)^{2}
\end{aligned}
$$

Since F satisfies a dual quaternion Cauchy-Riemann system (3.1), we have

$$
\begin{aligned}
D_{z} F= & D_{z} f+\varepsilon D_{z} g=\left(\frac{\partial f_{1}}{\partial z_{1}}+\frac{\partial f_{1}}{\partial \overline{z_{1}}}\right)+\left(\frac{\partial f_{2}}{\partial z_{1}}+\frac{\partial f_{2}}{\partial \overline{z_{1}}}\right) e_{2} \\
& +\varepsilon\left(\frac{\partial g_{1}}{\partial z_{1}}+\frac{\partial g_{1}}{\partial \overline{z_{1}}}\right)+\varepsilon\left(\frac{\partial g_{2}}{\partial z_{1}}+\frac{\partial g_{2}}{\partial \overline{z_{1}}}\right) e_{2}
\end{aligned}
$$

Therefore, since $\frac{\partial}{\partial z_{1}}+\frac{\partial}{\partial z_{1}}=\frac{\partial}{\partial x_{0}}$, we have

$$
\frac{d F\left(Z_{0}\right)}{d Z}=\frac{\partial F\left(Z_{0}\right)}{\partial x_{0}}
$$

References

1. S. Gotô \& K. Nôno: Regular Functions with Values in a Commutative Subalgebra $\mathbb{C}(\mathbb{C})$ of Matrix Algebra $M(4 ; \mathbb{R})$. Bull. Fukuoka Univ. Ed. 61 part III (2012), 9-15.
2. J. Kajiwara, X.D. Li \& K.H. Shon: Regeneration in complex, quaternion and Clifford analysis. Proc. the 9th International Conf. on Finite or Infinite Dimensional Complex Analysis and Applications, Adv. Complex Anal. Appl., Kluwer Acad. Pub., Hanoi, 2 (2004), no. 9, 287-298.
3. \qquad : Function spaces in complex and Clifford analysis, Inhomogeneous Cauchy Riemann system of quaternion and Clifford analysis in ellipsoid. Proc. the 14th International Conf. on Finite or Infinite Dimensional Complex Analysis and Applications, National Univ. Pub., Hanoi, Vietnam, Hue Univ., 14 (2006), 127-155.
4. J.E. Kim, S.J. Lim \& K.H. Shon: Taylor series of functions with values in dual quaternion. J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 20 (2013), no. 4, 251-258.
5. \qquad _ : Regular functions with values in ternary number system on the complex Clifford analysis. Abstr. Appl. Anal. 2013 Article ID. 136120 (2013), 7 pages.
6. \qquad : Regularity of functions on the reduced quaternion field in Clifford analysis. Abstr. Appl. Anal. 2014 Article ID. 654798 (2014), 8 pages.
7. \qquad : The Regularity of functions on Dual split quaternions in Clifford analysis. Abstr. Appl. Anal. 2014 Article ID. 369430 (2014), 8 pages.
8. H. Koriyama, H. Mae \& K. Nôno: Hyperholomorphic fucntions and holomorphic functions in quaternionic analysis. Bull. Fukuoka Univ. Ed. 60 part III (2011), 1-9.
9. H. Koriyama \& K. Nôno: On regularities of octonionic functions and holomorphic mappings. Bull. Fukuoka Univ. Ed. 60 part III (2011), 11-28.
10. S.J. Lim \& K.H. Shon: Properties of hyperholomorphic functions in Clifford analysis. East Asian Math. J. 28 (2012), no. 5, 553-559.
11. __ Dual quaternion functions and its applications. J. Applied Math. Article ID 583813 (2013), 6 pages.
12. M. Naser: Hyperholomorphic functions. Silberian Math. J. 12 (1971), 959-968.
13. K. Nôno: Hyperholomorphic functions of a quaternion variable. Bull. Fukuoka Univ. Ed. 32 (1983), 21-37.
${ }^{a}$ Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea
Email address: jeunkim@pusan.ac.kr
${ }^{\text {b }}$ Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea
Email address: khshon@pusan.ac.kr

[^0]: Received by the editors October 31, 2014. Accepted January 10, 2015.
 2010 Mathematics Subject Classification. 32G35, 32W50, 32A99, 11 E 88.
 Key words and phrases. quaternion analysis, derivative, Cauchy-Riemann system, regular function, dual quaternion.
 ${ }^{*}$ Corresponding author.

