SPLIT HYPERHOLOMORPHIC FUNCTION IN CLIFFORD ANALYSIS

Su Jin Lim ${ }^{\text {a }}$ and Kwang Ho Shon ${ }^{\text {b,* }}$

Abstract

We define a hyperholomorphic function with values in split quaternions, provide split hyperholomorphic mappings on $\Omega \subset \mathbb{C}^{2}$ and research the properties of split hyperholomorphic functions.

1. Introduction

A set of quaternions can be represented as

$$
\mathcal{H}=\left\{z=x_{0}+e_{1} x_{1}+e_{2} x_{2}+e_{3} x_{3}: x_{k} \in \mathbb{R}, k=0,1,2,3\right\}
$$

where $e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1$ and $e_{1} e_{2} e_{3}=-1$, which is non-commutative division algebra. A set of split quaternions can be expressed as

$$
\mathcal{S}=\left\{z=x_{0}+e_{1} x_{1}+e_{2} x_{2}+e_{3} x_{3}: x_{k} \in \mathbb{R}, k=0,1,2,3\right\}
$$

where $e_{1}^{2}=-1, e_{2}^{2}=e_{3}^{2}=1$ and $e_{1} e_{2} e_{3}=1$, which is also non-commutative. On the other hand, unlike quaternion algebra, a set of split quaternions contains zero divisors, nilpotent elements and non-trivial idempotents. Because split quaternions are used to express Lorentzian rotations, studies of the geometric and physical applications of split quaternions require solving split quaternionic equations (see [6], [9]). Deavours [3] generated regular functions in a quaternion analysis and provided the Cauchy-Fueter integral formulas for regular quaternion functions. Carmody [1, 2] investigated the properties of hyperbolic quaternions, octonions, and sedenions, and Sangwine and Bihan [10] provided a new polar representation of quaternions that is represented by a pair of complex numbers in the Cayley-Dickson form.

We shall denote by \mathbb{C} and \mathbb{R}, respectively, the field of complex numbers and the field of real numbers. We $[4,5]$ showed that any complex-valued harmonic function

[^0]f_{1} in a pseudoconvex domain D of $\mathbb{C}^{2} \times \mathbb{C}^{2}$ has a conjugate function f_{2} in D such that the quaternion-valued function $f_{1}+f_{2} j$ is hyperholomorphic in D and gave a regeneration theorem in a quaternion analysis in view of complex and Clifford analysis method. We define a split hyperholomorphic function with values in split quaternions and examine the properties of split hyperholomorphic functions based on [7].

2. Preliminary

The split quaternionic field \mathcal{S} is a four-dimensional non-commutative \mathbb{R}-field generated by four base elements e_{0}, e_{1}, e_{2}, and e_{3} with the following non-commutative multiplication rules :

$$
\begin{gathered}
e_{1}^{2}=-1, e_{2}^{2}=e_{3}^{2}=1, e_{k} e_{l}=-e_{l} e_{k}, \overline{e_{k}}=-e_{k}(k \neq l, k \neq 0, l \neq 0), \\
e_{1} e_{2}=e_{3}, e_{2} e_{3}=-e_{1}, e_{3} e_{1}=e_{2} .
\end{gathered}
$$

The element e_{0} is the identity of \mathcal{S}, and e_{1} identifies the imaginary unit $i=\sqrt{-1}$ in the \mathbb{C}-field of complex numbers. A split quaternion z is given by

$$
z=\sum_{k=0}^{3} e_{k} x_{k}=z_{1}+z_{2} e_{2},
$$

where $z_{1}=x_{0}+e_{1} x_{1}, z_{2}=x_{2}+e_{1} x_{3}, \overline{z_{1}}=x_{0}-e_{1} x_{1}$ and $\overline{z_{2}}=x_{2}-e_{1} x_{3}$ are complex numbers in \mathbb{C} and $x_{k}(k=0,1,2,3)$ are real numbers.
The multiplications of two pure split quaternions $\tilde{z}=e_{1} x_{1}+e_{2} x_{2}+e_{3} x_{3}$ and $\tilde{w}=$ $e_{1} y_{1}+e_{2} y_{2}+e_{3} y_{3}\left(y_{k} \in \mathbb{R}, k=1,2,3\right)$ is defined as follows:

$$
\begin{aligned}
\tilde{z} \cdot \tilde{w} & :=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}, \\
\tilde{z} \times \tilde{w} & :=\left|\begin{array}{ccc}
-e_{1} & e_{2} & e_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right| .
\end{aligned}
$$

For pure split quaternions \tilde{z}, \tilde{w} and \tilde{t}, the cross product satisfies two rules as follows:

$$
\begin{aligned}
& \tilde{z} \times \tilde{w}=-\tilde{w} \times \tilde{z}, \\
& \tilde{z} \times(\tilde{w} \times \tilde{t})+\tilde{w} \times(\tilde{t} \times \tilde{z})+\tilde{t} \times(\tilde{z} \times \tilde{w})=0 .
\end{aligned}
$$

The split quaternionic conjugate z^{*}, the multiplicative modulus $M(z)$ and the inverse z^{-1} of z in \mathcal{S} are defined as

$$
z^{*}=\sum_{k=0}^{3} \overline{e_{k}} x_{k}=\overline{z_{1}}-z_{2} e_{2},
$$

$$
\begin{gathered}
M(z):=z z^{*}=z^{*} z=x_{0}^{2}+x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2} \\
z^{-1}=\frac{z^{*}}{M(z)}(M(z) \neq 0)
\end{gathered}
$$

We let

$$
J=\frac{e_{1} x_{1}+e_{2} x_{2}+e_{3} x_{3}}{\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}} \text { with } J^{2}=e_{0}=i d
$$

The split quaternion number z of \mathcal{S} is

$$
z=\xi_{0}+J \xi_{1}
$$

where $\xi_{0}=x_{0}$ and $\xi_{1}=\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$. Then the split quaternionic conjugate number of z is $z^{*}=\xi_{0}-J \xi_{1}$, and the multiplicative modulus of z is $M(z)=\xi_{0}^{2}-\xi_{1}^{2}$. Let Ω be an open set in \mathbb{C}^{2} and consider a function f defined on Ω with values in \mathcal{S} :

$$
\begin{gathered}
f=\sum_{k=0}^{3} u_{k} e_{k}=u+J v \\
z=\left(\xi_{0}, \xi_{1}\right) \in \Omega \longmapsto f(z)=u(z)+J v(z) \in \mathcal{S}
\end{gathered}
$$

where $u=u_{0}$ and $v=\frac{\tilde{z} \cdot \tilde{f}+\tilde{z} \times \tilde{f}}{\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}$ with $\tilde{f}=\sum_{k=1}^{3} u_{k} e_{k}$.
We give differential operators as

$$
D:=\frac{1}{2}\left(\frac{\partial}{\partial \xi_{0}}-J \frac{\partial}{\partial \xi_{1}}\right) \text { and } D^{*}=\frac{1}{2}\left(\frac{\partial}{\partial \xi_{0}}+J \frac{\partial}{\partial \xi_{1}}\right)
$$

where $\frac{\partial}{\partial \xi_{0}}=\frac{\partial}{\partial x_{0}}$ and

$$
\frac{\partial}{\partial \xi_{1}}=\frac{\tilde{z} \cdot \tilde{D}^{*}+\tilde{z} \times \tilde{D}^{*}}{\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}
$$

where $\tilde{D}^{*}=\sum_{k=1}^{3} e_{k} \frac{\partial}{\partial x_{k}}$. Then the Coulomb operator (see [8]) is

$$
M(D)=D D^{*}=D^{*} D=\frac{1}{4} \sum_{k=0}^{3} \frac{\partial^{2}}{\partial x_{k}^{2}}=\frac{1}{4}\left(\frac{\partial^{2}}{\partial \xi_{0}^{2}}-\frac{\partial^{2}}{\partial \xi_{1}^{2}}\right)
$$

Definition 2.1. Let Ω be an open set in \mathbb{C}^{2}. A function $f(z)=f_{1}(z)+f_{2}(z) e_{2}$ is said to be an $L(R)$-split hyperholomorphic function on Ω if the following two conditions are satisfied:
(1) $f_{1}(z)$ and $f_{2}(z)$ are continuously differential functions on Ω, and
(2) $D^{*} f(z)=0\left(f(z) D^{*}=0\right)$ on Ω.

In this paper, we consider a L-split hyperholomorphic function on Ω in \mathbb{C}^{2}.

3. Split Hyperholomorphic Function

Let $\xi_{0}=r \cosh \theta$ and $\xi_{1}=r \sinh \theta$ with $r^{2}=\left|z z^{*}\right|$. Then any $z=\xi_{0}+J \xi_{1}$ can be expressed as $z=r(\cosh \theta+J \sinh \theta)$, where θ is the angle between the vector $z \in \mathbb{C}^{2}$ and the real axis.

Theorem 3.1. Let Ω be a domain of holomorphy in \mathbb{C}^{2}. If $u(r, \theta)$ is a split quaternion function satisfying $M(D) f=0$ on Ω, then there exists a split hyper-conjugate quaternion function $v(r, \theta)$ satisfying $M(D) f=0$ such that $u(r, \theta)+J v(r, \theta)$ is a split hyperholomorphic function on Ω.

Proof. We put

$$
\phi(r, \theta):=-\frac{1}{r} \frac{\partial u}{\partial \theta} d r-r \frac{\partial u}{\partial r} d \theta .
$$

We operate the operator ∂ from the left-hand side of $\phi(r, \theta)$ on Ω.

$$
\begin{aligned}
\partial \phi(r, \theta) & =\left(\frac{\partial}{\partial r} d r+\frac{\partial}{\partial \theta} d \theta\right)\left(-\frac{1}{r} \frac{\partial u}{\partial \theta} d r-r \frac{\partial u}{\partial r} d \theta\right) \\
& =\left(-\frac{\partial u}{\partial r}-r \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial^{2} u}{\partial \theta^{2}}\right) d r \wedge d \theta .
\end{aligned}
$$

Since $\frac{\partial f}{\partial r}=\cosh \theta \frac{\partial f}{\partial \xi_{0}}+\sinh \theta \frac{\partial f}{\partial \xi_{1}}, \frac{\partial^{2} f}{\partial r^{2}}=\cosh ^{2} \theta \frac{\partial^{2} f}{\partial \xi_{0}^{2}}+2 \sinh \theta \cosh \theta \frac{\partial^{2} f}{\partial \xi_{0} \partial \xi_{1}}+$ $\sinh ^{2} \theta \frac{\partial^{2} f}{\partial \xi_{1}^{2}}$ and $\frac{\partial^{2} f}{\partial \theta^{2}}=r \frac{\partial f}{\partial r}+r^{2}\left(\sinh ^{2} \theta \frac{\partial^{2} f}{\partial \xi_{0}^{2}}+2 \sinh \theta \cosh \theta \frac{\partial^{2} f}{\partial \xi_{0} \partial \xi_{1}}+\cosh ^{2} \theta \frac{\partial^{2} f}{\partial \xi_{1}^{2}}\right)$, we get $\partial \phi(r, \theta)$ is zero. Since Ω is a domain of holomorphy, the ∂-closed form $\phi(r, \theta)$ is a ∂-exact form on Ω. Hence, there exists a split hyper-conjugate quaternion function $v(r, \theta)$ satisfying $M(D) f=0$ on Ω such that $u(r, \theta)+J v(r, \theta)$ is a split hyperholomorphic function on Ω.

Example 3.2. If the split quaternion function

$$
u(r, \theta)=r^{n} \cosh (n \theta)+\left(r+\frac{1}{r}\right) \cosh \theta
$$

in a domain of holomorphy $\Omega \subset \mathbb{C}^{2}-\{0\}$ is known, then a split hyper-conjugate quaternion function $v(r, \theta)$ of $u(r, \theta)$ on Ω can be found. That is,

$$
v(r, \theta)=-r^{n} \sinh (n \theta)-\left(r-\frac{1}{r}\right) \sinh \theta
$$

and $f(r, \theta)=u(r, \theta)+J v(r, \theta)$ is a split hyperholomorphic function satisfying $M(D) f=$ 0 on Ω.

Theorem 3.3. Let Ω be an open set in \mathbb{C}^{2} and f be a split quaternion function satisfying $M(D) f=0$ on Ω. Then the multiplicative modulus of $D f$ is

$$
M(D f)=\left(\frac{\partial u}{\partial \xi_{0}}\right)^{2}-\left(\frac{\partial u}{\partial \xi_{1}}\right)^{2}=\left(\frac{\partial v}{\partial \xi_{1}}\right)^{2}-\left(\frac{\partial v}{\partial \xi_{0}}\right)^{2}
$$

Proof. For $f=u+J v$ and $\bar{f}=u-J v$,

$$
\begin{aligned}
M(D f)= & D f D^{*} \bar{f} \\
= & \frac{1}{4}\left\{\left(\frac{\partial u}{\partial \xi_{0}} \frac{\partial u}{\partial \xi_{0}}-2 \frac{\partial u}{\partial \xi_{0}} \frac{\partial v}{\partial \xi_{1}}-\frac{\partial \bar{v}}{\partial \xi_{0}} \frac{\partial v}{\partial \xi_{0}}+\frac{\partial \bar{v}}{\partial \xi_{0}} \frac{\partial u}{\partial \xi_{1}}+\frac{\partial u}{\partial \xi_{1}} \frac{\partial v}{\partial \xi_{0}}-\frac{\partial u}{\partial \xi_{1}} \frac{\partial u}{\partial \xi_{1}}\right.\right. \\
& \left.\left.+\frac{\partial v}{\partial \xi_{1}} \frac{\partial v}{\partial \xi_{1}}\right)+J\left(-\frac{\partial v}{\partial \xi_{0}} \frac{\partial v}{\partial \xi_{1}}+\frac{\partial u}{\partial \xi_{1}} \frac{\partial v}{\partial \xi_{1}}+\frac{\partial \bar{v}}{\partial \xi_{1}} \frac{\partial v}{\partial \xi_{0}}-\frac{\partial \bar{v}}{\partial \xi_{1}} \frac{\partial u}{\partial \xi_{1}}\right)\right\}
\end{aligned}
$$

where $\bar{v}=\frac{\tilde{z} \cdot \tilde{f}-\tilde{z} \times \tilde{f}}{\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}$. Since $\frac{\partial u}{\partial \xi_{0}}=-\frac{\partial v}{\partial \xi_{1}}$ and $\frac{\partial v}{\partial \xi_{0}}=-\frac{\partial u}{\partial \xi_{1}}$, we have

$$
M(D f)=\frac{1}{4}\left(4 \frac{\partial u}{\partial \xi_{0}} \frac{\partial u}{\partial \xi_{0}}-4 \frac{\partial u}{\partial \xi_{1}} \frac{\partial u}{\partial \xi_{1}}\right)=\left(\frac{\partial u}{\partial \xi_{0}}\right)^{2}-\left(\frac{\partial u}{\partial \xi_{1}}\right)^{2}=\left(\frac{\partial v}{\partial \xi_{1}}\right)^{2}-\left(\frac{\partial v}{\partial \xi_{0}}\right)^{2}
$$

Theorem 3.4. Let $f: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ be a polar coordinates mapping defined by

$$
f(r, \theta)=(r \cosh \theta, r \sinh \theta)
$$

Then the determinant of this mapping is

$$
\operatorname{det} \Delta_{\mathbb{R}} f(r, \theta)=1
$$

where $\Delta_{\mathbb{R}} f:=\frac{\partial(u, v)}{\partial\left(\xi_{0}, \xi_{1}\right)}$.
Proof. The chain rule gives

$$
\begin{aligned}
\frac{\partial u}{\partial \xi_{0}} & =\cosh \theta \frac{\partial u}{\partial r}-\frac{1}{r} \sinh \theta \frac{\partial u}{\partial \theta},-\frac{\partial v}{\partial \xi_{1}}=\sinh \theta \frac{\partial v}{\partial r}-\frac{1}{r} \cosh \theta \frac{\partial v}{\partial \theta} \\
\frac{\partial u}{\partial \xi_{1}} & =-\sinh \theta \frac{\partial u}{\partial r}+\frac{1}{r} \cosh \theta \frac{\partial u}{\partial \theta},-\frac{\partial v}{\partial \xi_{0}}=-\cosh \theta \frac{\partial v}{\partial r}+\frac{1}{r} \sinh \theta \frac{\partial v}{\partial \theta}
\end{aligned}
$$

Then

$$
\begin{aligned}
\Delta_{\mathbb{R}} f(r, \theta) & =\left(\begin{array}{cc}
\cosh \theta & -\frac{1}{r} \sinh \theta \\
-\sinh \theta & \frac{1}{r} \cosh \theta
\end{array}\right)\left(\begin{array}{ll}
\frac{\partial u}{\partial r} & \frac{\partial v}{\partial r} \\
\frac{\partial u}{\partial \theta} & \frac{\partial v}{\partial \theta}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cosh \theta & -\frac{1}{r} \sinh \theta \\
-\sinh \theta & \frac{1}{r} \cosh \theta
\end{array}\right)\left(\begin{array}{cc}
\cosh \theta & \sinh \theta \\
r \sinh \theta & r \cosh \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Theorem 3.5. Let $f: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ be a polar coordinates mapping defined by

$$
f(r, \theta)=\left(e^{r} \cosh \theta, e^{r} \sinh \theta\right) .
$$

Then the determinant of this mapping is

$$
\operatorname{det} \Delta_{\mathbb{R}} f(r, \theta)=\frac{1}{r} e^{2 r} .
$$

Proof. We can prove as above Theorem 3.4.
Theorem 3.6. Let Ω be an open set in \mathbb{C}^{2} and f be a split hyperholomorphic function on Ω. Then there exists a differentiable function φ on Ω such that the vector field

$$
f\left(\xi_{0}, \xi_{1}\right)=\left(u\left(\xi_{0}, \xi_{1}\right), v\left(\xi_{0}, \xi_{1}\right)\right)=\left(\frac{\partial}{\partial \xi_{0}} \varphi\left(\xi_{0}, \xi_{1}\right),-\frac{\partial}{\partial \xi_{1}} \varphi\left(\xi_{0}, \xi_{1}\right)\right) .
$$

Proof. We let any point ($\xi_{0}^{\prime}, \xi_{1}^{\prime}$) on Ω. Consider

$$
\varphi\left(\xi_{0}, \xi_{1}\right)=\int_{\xi_{0}^{\prime}}^{\xi_{0}} u\left(t, \xi_{1}\right) d t+\mu\left(\xi_{1}\right)
$$

where $\mu\left(\xi_{1}\right)$ is a split quaternion-valued function. By the fundamental theorem of calculus, we can find

$$
\frac{\partial}{\partial \xi_{0}} \varphi\left(\xi_{0}, \xi_{1}\right)=\frac{\partial}{\partial \xi_{0}} \int_{\xi_{0}^{\prime}}^{\xi_{0}} u\left(t, \xi_{1}\right) d t+\frac{\partial}{\partial \xi_{0}} \mu\left(\xi_{1}\right)=u\left(\xi_{0}, \xi_{1}\right) .
$$

Since f is a split hyperholomorphic function on Ω and differentiating with respect to ξ_{1}, we obtain

$$
\begin{aligned}
\frac{\partial}{\partial \xi_{1}} \varphi\left(\xi_{0}, \xi_{1}\right) & =\int_{\xi_{0}^{\prime}}^{\xi_{0}} \frac{\partial}{\partial \xi_{1}} u\left(t, \xi_{1}\right) d t+\frac{\partial}{\partial \xi_{1}} \mu\left(\xi_{1}\right) \\
& =-\int_{\xi_{0}^{\prime}}^{\xi_{0}} \frac{\partial}{\partial \xi_{0}} v\left(t, \xi_{1}\right) d t+\frac{\partial}{\partial \xi_{1}} \mu\left(\xi_{1}\right) \\
& =-\int_{\xi_{0}^{\prime}}^{\xi_{0}} \frac{\partial}{\partial \xi_{0}} \sum_{k=0}^{3} e_{k} v_{k}\left(t, \xi_{1}\right) d t+\frac{\partial}{\partial \xi_{1}} \mu\left(\xi_{1}\right) \\
& =\sum_{k=0}^{3} e_{k}\left(-v_{k}\left(\xi_{0}, \xi_{1}\right)+v_{k}\left(\xi_{0}^{\prime}, \xi_{1}\right)\right)+\frac{\partial}{\partial \xi_{1}} \mu\left(\xi_{1}\right) \\
& =-v\left(\xi_{0}, \xi_{1}\right)+v\left(\xi_{0}^{\prime}, \xi_{1}\right)+\frac{\partial}{\partial \xi_{1}} \mu\left(\xi_{1}\right),
\end{aligned}
$$

where $v_{0}=-\frac{x_{1} u_{1}-x_{2} u_{2}-x_{3} u_{3}}{\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}, v_{1}=-\frac{x_{2} u_{3}-x_{3} u_{2}}{\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}, v_{2}=-\frac{x_{1} u_{3}-x_{3} u_{1}}{\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}$ and $v_{3}=$ $-\frac{x_{2} u_{1}-x_{1} u_{2}}{\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}$. Putting $\mu\left(\xi_{1}\right)=-\int v\left(\xi_{0}^{\prime}, \xi_{1}\right) d \xi_{1}$ and then we have $\frac{\partial}{\partial \xi_{1}} \varphi\left(\xi_{0}, \xi_{1}\right)=$ $-v\left(\xi_{0}, \xi_{1}\right)$.

References

1. K. Carmody: Circular and hyperbolic quaternions, octonions and sedenions. Appl. Math. Comput. 28 (1988), no. 1, 47-72.
2. \qquad : Circular and hyperbolic quaternions, octonions and sedenions-Further results. Appl. Math. Comput. 84 (1997), no. 1, 27-47.
3. C.A. Deavous: The quaternion calculus. Am. Math. Mon. 80 (1973), no. 9, 995-1008.
4. J. Kajiwara, X.D. Li \& K.H. Shon: Regeneration in complex, quaternion and Clifford analysis. in: International Colloquium on Finite or Infinite Dimensional Complex Analysis and its Applications, vol. 2., Kluwer Academic Publishers, Vietnam (2004).
5. \qquad : Function spaces in complex and Clifford analysis. in: International Colloquium on Finite or Infinite Dimensional Complex Analysis and its Applications, vol. 14., Hue University, Vietnam (2006).
6. L. Kula \& Y. Yayl: Split quaternions and rotations in semi Euclidean space E4. J. Korean Math. Soc. 44 (2007), no. 6, 1313-1327.
7. S. Lang: Calculus of several variables. New York: Springer-Verlag (1987).
8. E. Obolashvili : Some partial differential equations in Clifford analysis. Banach Center Publ. 37 (1996), no. 1, 173-179.
9. M. Özdemir \& A.A. Ergin: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 56 (2006), no. 2, 322-336.
10. S.J. Sangwine \& N.L. Bihan: Quaternion polar representation with a complex modulus and complex argument inspired by the Cayley-Dickson form. Adv. in Appl. Cliff. Algs. 20) (2010), no. 1, 111-120.
${ }^{\text {a Department of Mathematics, Pusan National University, Busan 609-735, Korea }}$
Email address: sjlim@pusan.ac.kr
${ }^{\text {b }}$ Department of Mathematics, Pusan National University, Busan 609-735, Korea
Email address: khshon@pusan.ac.kr

[^0]: Received by the editors October 14, 2014. Accepted November 22, 2014.
 2010 Mathematics Subject Classification. 30G35, 32W50, 32A99.
 Key words and phrases. split quaternion, split hyperholomorphic function, Clifford analysis.
 *Corresponding author.

