
J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468/jksmeb.2015.22.1.57 ISSN(Online) 2287-6081
Volume 22, Number 1 (February 2015), Pages 57–63

SPLIT HYPERHOLOMORPHIC FUNCTION
IN CLIFFORD ANALYSIS

Su Jin Lim a and Kwang Ho Shon b,∗

Abstract. We define a hyperholomorphic function with values in split quaternions,
provide split hyperholomorphic mappings on Ω ⊂ C2 and research the properties of
split hyperholomorphic functions.

1. Introduction

A set of quaternions can be represented as

H = {z = x0 + e1x1 + e2x2 + e3x3 : xk ∈ R, k = 0, 1, 2, 3},
where e2

1 = e2
2 = e2

3 = −1 and e1e2e3 = −1, which is non-commutative division
algebra. A set of split quaternions can be expressed as

S = {z = x0 + e1x1 + e2x2 + e3x3 : xk ∈ R, k = 0, 1, 2, 3},
where e2

1 = −1, e2
2 = e2

3 = 1 and e1e2e3 = 1, which is also non-commutative. On
the other hand, unlike quaternion algebra, a set of split quaternions contains zero
divisors, nilpotent elements and non-trivial idempotents. Because split quaternions
are used to express Lorentzian rotations, studies of the geometric and physical appli-
cations of split quaternions require solving split quaternionic equations (see [6], [9]).
Deavours [3] generated regular functions in a quaternion analysis and provided the
Cauchy-Fueter integral formulas for regular quaternion functions. Carmody [1, 2]
investigated the properties of hyperbolic quaternions, octonions, and sedenions, and
Sangwine and Bihan [10] provided a new polar representation of quaternions that is
represented by a pair of complex numbers in the Cayley-Dickson form.

We shall denote by C and R, respectively, the field of complex numbers and the
field of real numbers. We [4, 5] showed that any complex-valued harmonic function
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f1 in a pseudoconvex domain D of C2 × C2 has a conjugate function f2 in D such
that the quaternion-valued function f1 + f2j is hyperholomorphic in D and gave
a regeneration theorem in a quaternion analysis in view of complex and Clifford
analysis method. We define a split hyperholomorphic function with values in split
quaternions and examine the properties of split hyperholomorphic functions based
on [7].

2. Preliminary

The split quaternionic field S is a four-dimensional non-commutative R-field gen-
erated by four base elements e0, e1, e2, and e3 with the following non-commutative
multiplication rules :

e2
1 = −1, e2

2 = e2
3 = 1, ekel = −elek, ek = −ek (k 6= l, k 6= 0, l 6= 0),

e1e2 = e3, e2e3 = −e1, e3e1 = e2.

The element e0 is the identity of S, and e1 identifies the imaginary unit i =
√−1 in

the C-field of complex numbers. A split quaternion z is given by

z =
3∑

k=0

ekxk = z1 + z2e2,

where z1 = x0 +e1x1, z2 = x2 +e1x3, z1 = x0−e1x1 and z2 = x2−e1x3 are complex
numbers in C and xk (k = 0, 1, 2, 3) are real numbers.
The multiplications of two pure split quaternions z̃ = e1x1 + e2x2 + e3x3 and w̃ =
e1y1 + e2y2 + e3y3 (yk ∈ R, k = 1, 2, 3) is defined as follows:

z̃ · w̃ := −x1y1 + x2y2 + x3y3,

z̃ × w̃ :=

∣∣∣∣∣∣

−e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
.

For pure split quaternions z̃, w̃ and t̃, the cross product satisfies two rules as follows:

z̃ × w̃ = −w̃ × z̃,

z̃ × (w̃ × t̃) + w̃ × (t̃× z̃) + t̃× (z̃ × w̃) = 0.

The split quaternionic conjugate z∗, the multiplicative modulus M(z) and the inverse
z−1 of z in S are defined as

z∗ =
3∑

k=0

ekxk = z1 − z2e2,
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M(z) := zz∗ = z∗z = x2
0 + x2

1 − x2
2 − x2

3 = |z1|2 − |z2|2,

z−1 =
z∗

M(z)
(M(z) 6= 0).

We let

J =
e1x1 + e2x2 + e3x3√

−x2
1 + x2

2 + x2
3

with J2 = e0 = id.

The split quaternion number z of S is

z = ξ0 + Jξ1,

where ξ0 = x0 and ξ1 =
√
−x2

1 + x2
2 + x2

3. Then the split quaternionic conjugate
number of z is z∗ = ξ0−Jξ1, and the multiplicative modulus of z is M(z) = ξ2

0 − ξ2
1 .

Let Ω be an open set in C2 and consider a function f defined on Ω with values in S:

f =
3∑

k=0

ukek = u + Jv

z = (ξ0, ξ1) ∈ Ω 7−→ f(z) = u(z) + Jv(z) ∈ S,

where u = u0 and v = z̃·f̃+z̃×f̃√
−x2

1+x2
2+x2

3

with f̃ =
∑3

k=1 ukek.

We give differential operators as

D :=
1
2

(
∂

∂ξ0
− J

∂

∂ξ1

)
and D∗ =

1
2

(
∂

∂ξ0
+ J

∂

∂ξ1

)
,

where ∂
∂ξ0

= ∂
∂x0

and

∂

∂ξ1
=

z̃ · D̃∗ + z̃ × D̃∗
√
−x2

1 + x2
2 + x2

3

,

where D̃∗ =
∑3

k=1 ek
∂

∂xk
. Then the Coulomb operator (see [8]) is

M(D) = DD∗ = D∗D =
1
4

3∑

k=0

∂2

∂x2
k

=
1
4

(
∂2

∂ξ2
0

− ∂2

∂ξ2
1

)
.

Definition 2.1. Let Ω be an open set in C2. A function f(z) = f1(z) + f2(z)e2

is said to be an L(R)-split hyperholomorphic function on Ω if the following two
conditions are satisfied:

(1) f1(z) and f2(z) are continuously differential functions on Ω, and
(2) D∗f(z) = 0 (f(z)D∗ = 0) on Ω.

In this paper, we consider a L-split hyperholomorphic function on Ω in C2.



60 Su Jin Lim & Kwang Ho Shon

3. Split Hyperholomorphic Function

Let ξ0 = r cosh θ and ξ1 = r sinh θ with r2 = |zz∗|. Then any z = ξ0 +Jξ1 can be
expressed as z = r(cosh θ+J sinh θ), where θ is the angle between the vector z ∈ C2

and the real axis.

Theorem 3.1. Let Ω be a domain of holomorphy in C2. If u(r, θ) is a split quater-
nion function satisfying M(D)f = 0 on Ω, then there exists a split hyper-conjugate
quaternion function v(r, θ) satisfying M(D)f = 0 such that u(r, θ) + Jv(r, θ) is a
split hyperholomorphic function on Ω.

Proof. We put

φ(r, θ) := −1
r

∂u

∂θ
dr − r

∂u

∂r
dθ.

We operate the operator ∂ from the left-hand side of φ(r, θ) on Ω.

∂φ(r, θ) =
(

∂

∂r
dr +

∂

∂θ
dθ

)(
−1

r

∂u

∂θ
dr − r

∂u

∂r
dθ

)

=
(
−∂u

∂r
− r

∂2u

∂r2
+

1
r

∂2u

∂θ2

)
dr ∧ dθ.

Since ∂f
∂r = cosh θ ∂f

∂ξ0
+ sinh θ ∂f

∂ξ1
, ∂2f

∂r2 = cosh2 θ ∂2f
∂ξ2

0
+ 2 sinh θ cosh θ ∂2f

∂ξ0∂ξ1
+

sinh2 θ ∂2f
∂ξ2

1
and ∂2f

∂θ2 = r ∂f
∂r + r2

(
sinh2 θ ∂2f

∂ξ2
0

+ 2 sinh θ cosh θ ∂2f
∂ξ0∂ξ1

+ cosh2 θ ∂2f
∂ξ2

1

)
,

we get ∂φ(r, θ) is zero. Since Ω is a domain of holomorphy, the ∂-closed form φ(r, θ)
is a ∂-exact form on Ω. Hence, there exists a split hyper-conjugate quaternion
function v(r, θ) satisfying M(D)f = 0 on Ω such that u(r, θ) + Jv(r, θ) is a split
hyperholomorphic function on Ω. ¤

Example 3.2. If the split quaternion function

u(r, θ) = rn cosh(nθ) + (r +
1
r
) cosh θ

in a domain of holomorphy Ω ⊂ C2 − {0} is known, then a split hyper-conjugate
quaternion function v(r, θ) of u(r, θ) on Ω can be found. That is,

v(r, θ) = −rn sinh(nθ)− (r − 1
r
) sinh θ

and f(r, θ) = u(r, θ)+Jv(r, θ) is a split hyperholomorphic function satisfying M(D)f =
0 on Ω.

Theorem 3.3. Let Ω be an open set in C2 and f be a split quaternion function
satisfying M(D)f = 0 on Ω. Then the multiplicative modulus of Df is
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M(Df) =
(

∂u

∂ξ0

)2

−
(

∂u

∂ξ1

)2

=
(

∂v

∂ξ1

)2

−
(

∂v

∂ξ0

)2

.

Proof. For f = u + Jv and f = u− Jv,

M(Df) = DfD∗f

=
1
4

{( ∂u

∂ξ0

∂u

∂ξ0
− 2

∂u

∂ξ0

∂v

∂ξ1
− ∂v

∂ξ0

∂v

∂ξ0
+

∂v

∂ξ0

∂u

∂ξ1
+

∂u

∂ξ1

∂v

∂ξ0
− ∂u

∂ξ1

∂u

∂ξ1

+
∂v

∂ξ1

∂v

∂ξ1

)
+ J

(
− ∂v

∂ξ0

∂v

∂ξ1
+

∂u

∂ξ1

∂v

∂ξ1
+

∂v

∂ξ1

∂v

∂ξ0
− ∂v

∂ξ1

∂u

∂ξ1

)}
,

where v = z̃·f̃−z̃×f̃√
−x2

1+x2
2+x2

3

. Since ∂u
∂ξ0

= − ∂v
∂ξ1

and ∂v
∂ξ0

= − ∂u
∂ξ1

, we have

M(Df) =
1
4

(
4

∂u

∂ξ0

∂u

∂ξ0
− 4

∂u

∂ξ1

∂u

∂ξ1

)
=

(
∂u

∂ξ0

)2

−
(

∂u

∂ξ1

)2

=
(

∂v

∂ξ1

)2

−
(

∂v

∂ξ0

)2

.

¤

Theorem 3.4. Let f : C2 −→ C2 be a polar coordinates mapping defined by

f(r, θ) = (r cosh θ, r sinh θ).

Then the determinant of this mapping is

det∆Rf(r, θ) = 1,

where ∆Rf := ∂(u,v)
∂(ξ0,ξ1) .

Proof. The chain rule gives

∂u

∂ξ0
= cosh θ

∂u

∂r
− 1

r
sinh θ

∂u

∂θ
, − ∂v

∂ξ1
= sinh θ

∂v

∂r
− 1

r
cosh θ

∂v

∂θ
,

∂u

∂ξ1
= − sinh θ

∂u

∂r
+

1
r

cosh θ
∂u

∂θ
, − ∂v

∂ξ0
= − cosh θ

∂v

∂r
+

1
r

sinh θ
∂v

∂θ
.

Then

∆Rf(r, θ) =
(

cosh θ −1
r sinh θ

− sinh θ 1
r cosh θ

)(
∂u
∂r

∂v
∂r

∂u
∂θ

∂v
∂θ

)

=
(

cosh θ −1
r sinh θ

− sinh θ 1
r cosh θ

)(
cosh θ sinh θ
r sinh θ r cosh θ

)

=
(

1 0
0 1

)
.

¤
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Theorem 3.5. Let f : C2 −→ C2 be a polar coordinates mapping defined by

f(r, θ) = (er cosh θ, er sinh θ).

Then the determinant of this mapping is

det∆Rf(r, θ) =
1
r
e2r.

Proof. We can prove as above Theorem 3.4. ¤

Theorem 3.6. Let Ω be an open set in C2 and f be a split hyperholomorphic function
on Ω. Then there exists a differentiable function ϕ on Ω such that the vector field

f(ξ0, ξ1) = (u(ξ0, ξ1), v(ξ0, ξ1)) =
(

∂

∂ξ0
ϕ(ξ0, ξ1),− ∂

∂ξ1
ϕ(ξ0, ξ1)

)
.

Proof. We let any point (ξ′0, ξ
′
1) on Ω. Consider

ϕ(ξ0, ξ1) =
∫ ξ0

ξ′0
u(t, ξ1)dt + µ(ξ1),

where µ(ξ1) is a split quaternion-valued function. By the fundamental theorem of
calculus, we can find

∂

∂ξ0
ϕ(ξ0, ξ1) =

∂

∂ξ0

∫ ξ0

ξ′0
u(t, ξ1)dt +

∂

∂ξ0
µ(ξ1) = u(ξ0, ξ1).

Since f is a split hyperholomorphic function on Ω and differentiating with respect
to ξ1, we obtain

∂

∂ξ1
ϕ(ξ0, ξ1) =

∫ ξ0

ξ′0

∂

∂ξ1
u(t, ξ1)dt +

∂

∂ξ1
µ(ξ1)

= −
∫ ξ0

ξ′0

∂

∂ξ0
v(t, ξ1)dt +

∂

∂ξ1
µ(ξ1)

= −
∫ ξ0

ξ′0

∂

∂ξ0

3∑

k=0

ekvk(t, ξ1)dt +
∂

∂ξ1
µ(ξ1)

=
3∑

k=0

ek(−vk(ξ0, ξ1) + vk(ξ′0, ξ1)) +
∂

∂ξ1
µ(ξ1)

= −v(ξ0, ξ1) + v(ξ′0, ξ1) +
∂

∂ξ1
µ(ξ1),

where v0 = −x1u1−x2u2−x3u3√
−x2

1+x2
2+x2

3

, v1 = − x2u3−x3u2√
−x2

1+x2
2+x2

3

, v2 = − x1u3−x3u1√
−x2

1+x2
2+x2

3

and v3 =

− x2u1−x1u2√
−x2

1+x2
2+x2

3

. Putting µ(ξ1) = − ∫
v(ξ′0, ξ1)dξ1 and then we have ∂

∂ξ1
ϕ(ξ0, ξ1) =

−v(ξ0, ξ1). ¤



SPLIT HYPERHOLOMORPHIC FUNCTION IN CLIFFORD ANALYSIS 63

References

1. K. Carmody : Circular and hyperbolic quaternions, octonions and sedenions. Appl.
Math. Comput. 28 (1988), no. 1, 47-72.

2. : Circular and hyperbolic quaternions, octonions and sedenions-Further results.
Appl. Math. Comput. 84 (1997), no. 1, 27-47.

3. C.A. Deavous : The quaternion calculus. Am. Math. Mon. 80 (1973), no. 9, 995-1008.
4. J. Kajiwara, X.D. Li & K.H. Shon : Regeneration in complex, quaternion and Clif-

ford analysis. in: International Colloquium on Finite or Infinite Dimensional Complex
Analysis and its Applications, vol. 2., Kluwer Academic Publishers, Vietnam (2004).

5. : Function spaces in complex and Clifford analysis. in: International Colloquium
on Finite or Infinite Dimensional Complex Analysis and its Applications, vol. 14., Hue
University, Vietnam (2006).

6. L. Kula & Y. Yayl : Split quaternions and rotations in semi Euclidean space E4. J.
Korean Math. Soc. 44 (2007), no. 6, 1313-1327.

7. S. Lang : Calculus of several variables. New York : Springer-Verlag (1987).
8. E. Obolashvili : Some partial differential equations in Clifford analysis. Banach Center

Publ. 37 (1996), no. 1, 173-179.
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