DOI QR코드

DOI QR Code

An Automatic Mobile Cell Counting System for the Analysis of Biological Image

생물학적 영상 분석을 위한 자동 모바일 셀 계수 시스템

  • Seo, Jaejoon (Department of Computer Science, Kyonggi University) ;
  • Chun, Junchul (Department of Computer Science, Kyonggi University) ;
  • Lee, Jin-Sung (Department of Life Science, Kyonggi University)
  • Received : 2014.10.06
  • Accepted : 2014.11.01
  • Published : 2015.02.28

Abstract

This paper presents an automatic method to detect and count the cells from microorganism images based on mobile environments. Cell counting is an important process in the field of biological and pathological image analysis. In the past, cell counting is done manually, which is known as tedious and time consuming process. Moreover, the manual cell counting can lead inconsistent and imprecise results. Therefore, it is necessary to make an automatic method to detect and count cells from biological images to obtain accurate and consistent results. The proposed multi-step cell counting method automatically segments the cells from the image of cultivated microorganism and labels the cells by utilizing topological analysis of the segmented cells. To improve the accuracy of the cell counting, we adopt watershed algorithm in separating agglomerated cells from each other and morphological operation in enhancing the individual cell object from the image. The system is developed by considering the availability in mobile environments. Therefore, the cell images can be obtained by a mobile phone and the processed statistical data of microorganism can be delivered by mobile devices in ubiquitous smart space. From the experiments, by comparing the results between manual and the proposed automatic cell counting we can prove the efficiency of the developed system.

본 논문에서는 모바일 환경에서 미세세포 영상으로부터 셀을 자동 검출하고 계수하는 자동화 방법을 제시하였다. 셀 카운팅은 생물학 또는 병리학적 영상분석에 있어서 매우 중요한 과정이다. 과거에는 셀 카운팅은 수동적인 방법으로 진행되어 매우 지루하고 많은 시간을 필요로 하는 작업이었다. 이에 더하여 수동 계수 방법은 정확한 카운팅 결과를 도출하는데 어려움이 있었다. 따라서, 정확하고 일관된 셀 검출과 카운팅 결과를 생물학적인 영상으로부터 획득하기 위해서는 자동화방법이 필요하다. 제안된 다단계 셀 계수방법은 배양된 세포영상으로부터 셀을 자동으로 분할하고 분할된 셀의 위상학적 분석을 통하여 셀을 라벨링 한다. 셀 카운팅의 정확도를 높이기 위하여 워터쉐드 알고리듬에 의하여 서로 덩어리로 뭉쳐진 셀을 서로 분리하고 모폴로지 연산을 통하여 영상으로부터 획득한 개별 셀의 형태를 개선한다. 제안된 시스템은 모바일 환경에서 사용될 수 있도록 개발되었다. 따라서 셀 영상은 모바일 폰의 카메라로 획득하며 미세세포의 통계학적인 분석 데이터는 유비쿼터스 환경의 모바일 장치에 의해 전송 된다. 실험을 통하여 수동으로 계수한 셀의 숫자와 제안된 방법에 의해 자동 카운팅 된 셀의 수를 비교한 결과 제안된 방법이 매우 효과적이고 정확한 결과를 제시한다는 사실을 입증하였다.

Keywords

References

  1. N. Bandekar, A. Wong, D. Clausi and M. Gorbet, "A novel approach to automated cell counting for studying human corneal epithelial cell", 33rd Annual International Conference of the IEEE EMBS, pp. 5997-6000, 2011. http://dx.doi.org/10.1109/IEMBS.2011.6091482
  2. P. Frolkovic, K. Mikula, N. Peyrieras, and A. Sarti, "Counting number of cells and cell segmentation using advection-diffusion equations", KYBERNETIKA, Vol 43, No. 6, pp. 817-829, 2007. http://dml.cz/dmlcz/135818
  3. L. Balagopalan, E. Sherman, V. Barr, L. Samelson, "Imaging techniques for assaying lymphocyte activation in action", Nat Rev Immunology, Vol. 11, No.1, pp. 21-33, 2011. http://dx.doi.org/10.1038/nri2903
  4. S. Kothari, Q. Chaudry and M. Wang, "Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques", IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.795-798, 2009. http://dx.doi.org/10.1109/ISBI.2009.5193169
  5. M. Pons, H. Vivier, J. Remy and J. Dodds, "Morphological characterization of yeast by image analysis", Biotechnology and Bioengineering, vol. 42, no. 11, pp. 1352-1359, 1993. http://www.ncbi.nlm.nih.gov/pubmed/18612963 https://doi.org/10.1002/bit.260421112
  6. K. Zalewski and R. Buchholz, "Morphological analysis of yeast cells using an automated image processing system", Journal of Biotechnology, vol. 48, no. 1-2, pp. 43-49, 1996. http://dx.doi.org/10.1016/0168-1656(96)01503-9
  7. D. Young, C. Glasbey, A. Gray and N. Martin, "Towards automatic cell identification in DIC microscopy", Journal of Microscopy, vol. 192, no. 2, pp. 186-193, 1998. http://www.ncbi.nlm.nih.gov/pubmed/9853375 https://doi.org/10.1046/j.1365-2818.1998.00397.x
  8. P. Bamford and B. Lovell, "Unsupervised cell nucleus segmentation with active contours", Signal Processing, vol. 71, no. 2, pp. 203-213,1998. http://dx.doi.org/10.1016/S0165-1684(98)00145-5
  9. C. Li, C. Xu, C. Gui, and M. D. Fox, "Distance Regularized Level Set Evolution and its Application to Image Segmentation", IEEE Transactions on Image Processing, Vol. 19, No. 12, pp. 3243-3254, 2010. http://dx.doi.org/10.1109/TIP.2010.2069690
  10. G. Borgefors, "Distance transformations in digital images", Computer Vision, Graphics and Image Processing, Vol. 34, pp. 344-371, 1986. http://dx.doi.org/10.1016/S0734-189X(86)80047-0
  11. J. B. T. M. Roerdink and A. Meijster, "The watershed transform: definitions, algorithms, and parallellization strategies", Fundamenta Informaticae, Vol. 41, pp.187-228, 2000.
  12. Nassir Salman "Image Segmentation Based on Watershed and Edge Detection Technique", The International Arab Journal of Information Technology, Vol. 3, No. 2 pp. 104-110, 2006.
  13. Suphalakshmi. A, and Anandhakumar P "An Improved Fast Watershed Algorithm based on finding the Shortest Paths with Breadth First Search", International Journal of Computer Applications, Vol. 44, No. 11, pp. 1-9, 2012. https://doi.org/10.5120/6304-8614

Cited by

  1. A New Hyper Parameter of Hounsfield Unit Range in Liver Segmentation vol.21, pp.3, 2015, https://doi.org/10.7472/jksii.2020.21.3.103