DOI QR코드

DOI QR Code

Effects of Scopoletin Supplementation on Insulin Resistance and Antioxidant Defense System in Chronic Alcohol-Fed Rats

Scopoletin 보충이 만성 알코올을 급여한 흰쥐의 인슐린저항성 및 항산화방어계에 미치는 영향

  • Lee, Hae-In (Department of Food and Nutrition, Sunchon National University) ;
  • Lee, Mi-Kyung (Department of Food and Nutrition, Sunchon National University)
  • Received : 2014.10.13
  • Accepted : 2014.10.19
  • Published : 2015.02.28

Abstract

This study investigated the effects of scopoletin (6-methoxy-7-hydroxycoumarin) supplementation on insulin resistance and the antioxidant defense system in chronic alcohol-fed rats. Rats were fed a Lieber-Decarli liquid diet containing 5% ethanol with or without two doses of scopoletin (0.01 and 0.05 g/L) for 8 weeks. Pair-fed rats received an isocaloric carbohydrate liquid diet. Chronic alcohol did not affect fasting serum glucose levels, although it induced glucose intolerance and hyperinsulinemia compared with the pair-fed group and led to insulin resistance. Both doses of scopoletin similarly improved glucose intolerance, serum insulin level, and insulin resistance. Scopoletin supplementation significantly activated phosphatidyl inositol 3-kinase, which was inhibited by chronic alcohol. Two doses of scopoletin up-regulated hepatic mRNA expression and activity of glucokinase as well as down-regulated mRNA expression and activity of glucose-6-phosphatase compared with the alcohol control group. Both doses of scopoletin significantly reduced cytochrome P450 2E1 activity and elevated aldehyde dehydrogenase 2 activity, resulting in a lower serum acetaldehyde level compared with the alcohol control group. Chronic alcohol suppressed hepatic mRNA expression and activities of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; however, they were reversed by scopoletin supplementation, which reduced hydrogen peroxide and lipid peroxide levels in the liver. These results indicate that dietary scopoletin attenuated chronic alcohol-induced insulin resistance and activated the antioxidant defense system through regulation of hepatic gene expression in glucose and antioxidant metabolism.

본 연구는 scopoletin 식이 보충이 알코올로 인해 유발되는 인슐린저항성과 항산화방어계에 미치는 영향을 구명하고자 하였다. 실험동물은 4주령의 수컷 SD계 흰쥐에게 총 열량의 36%에 해당하는 알코올을 액체식이 형태로 8주간 공급하였으며, scopoletin은 알코올 액체식이 리터당 0.01 g과 0.05 g 두 수준으로 첨가하였다. 정상군은 알코올대조군과 동량의 에너지를 섭취하도록 하였다. 8주간의 알코올 급여는 공복 시 혈당 변화를 일으키지 않았으나 혈청 인슐린 함량을 증가시켰으며, 이는 인슐린저항성과 내당능 장애를 유발하였다. 그러나 scopoletin 저농도와 고농도 급여군 모두 인슐린 함량, 인슐린저항성 지표 및 내당능을 효과적으로 개선하는 것으로 나타났다. 알코올대조군은 p-PI3K의 단백질 발현을 유의적으로 낮추어 glucokinase 유전자 발현과 활성을 억제한 반면, 당신생 효소인 glucose-6-phosphatase의 유전자 발현과 활성을 유의적으로 높였다. 그러나 scopoletin 급여에 의하여 이들 변화는 완화되었다. 다른 당신생 효소인 phosphoenolpyruvate carboxykinase의 유전자 발현과 활성에는 영향을 미치지 않았다. 또한 scopoletin 급여군 모두 간조직의 aldehyde dehydrogenase의 활성은 알코올 대조군에 비해 증가된 반면, cytochrome P450 2E1 활성은 억제되었다. 또한 알코올로 인하여 낮아진 간조직 중의 항산화 효소(superoxide dismutase, catalase와 glutathione peroxidase)의 유전자 발현과 활성을 높임으로써 과산화수소 및 지질과산화물의 함량을 낮추었다. 이와 같이 0.001%의 scopoletin 급여량에서도 당대사의 유전자 변화를 통하여 만성 알코올로 유도되는 인슐린저항성을 개선하였으며, 알코올대사계 활성 및 항산화방어계 효소의 유전자 발현을 증가함으로써 알코올로 인한 과산화수소와 지질과산화물 생성을 개선하는 것으로 나타났다.

Keywords

References

  1. Ministry of Health and Welfare. 2014. Community health survey. Korea Centers for Disease Control and Prevention, Osong, Korea. p 68-74.
  2. Lee SM, Yun YD, Hyun KR, Lee EM. 2012. Health insurance & policy. National Health Insurance Service, Seoul, Korea. p 179-190.
  3. de la Monte SM, Yeon J, Tong M, Longato L, Chaudhry R, Pang MY, Duan K, Wands JR. 2008. Insulin resistance in experimental alcohol‐induced liver disease. J Gastroenterol Hepatol 23: e477-e486. https://doi.org/10.1111/j.1440-1746.2008.05339.x
  4. de la Monte S, Derdak Z, Wands JR. 2012. Alcohol, insulin resistance and the liver-brain axis. J Gastroenterol Hepatol 27: 33-41. https://doi.org/10.1111/j.1440-1746.2011.07023.x
  5. Newsholme P, Rebelato E, Abdulkader F, Krause M, Carpinelli A, Curi R. 2012. Reactive oxygen and nitrogen species generation, antioxidant defenses, and beta-cell function: a critical role for amino acids. J Endocrinol 214: 11-20. https://doi.org/10.1530/JOE-12-0072
  6. Linder MC. 1991. Nutritional biochemistry and metabolism: with clinical applications. 2nd ed. Elsevier, Amsterdam Oxford, NY, USA. p 79-83.
  7. McDonough KH. 2003. Antioxidant nutrients and alcohol. Toxicology 189: 89-97. https://doi.org/10.1016/S0300-483X(03)00155-0
  8. Choi JY, Kim JH, Kim G, Kim CK, Choi MS. 2014. Effect of fermented Hovenia dulcis Thunb fruit water extract on biomarker for liver injury and body weight changes in rats given oral administration of ethanol. Korean J Food Preserv 21: 412-420. https://doi.org/10.11002/kjfp.2014.21.3.412
  9. Kuwahara K, Kochi T, Nanri A, Tsuruoka H, Kurotani K, Pham NM, Akter S, Kabe I, Mizoue T. 2014. Flushing response modifies the association of alcohol consumption with markers of glucose metabolism in Japanese men and women. Alcohol Clin Exp Res 38: 1042-1048. https://doi.org/10.1111/acer.12323
  10. Lindtner C, Scherer T, Zielinski E, Filatova N, Fasshauer M, Tonks NK, Puchowicz M, Buettner C. 2013. Binge drinking induces whole-body insulin resistance by impairing hypothalamic insulin action. Sci Transl Med 5: 170ra14.
  11. Cho BS, Lee JJ, Lee MY. 2007. Effects of ethanol extracts from Petasites japonicus S. et Z. max. on hepatic antioxidative systems in alcohol treated rats. J Korean Soc Food Sci Nutr 36: 298-304. https://doi.org/10.3746/jkfn.2007.36.3.298
  12. Park YS. 2010. Antioxidant effects and improvement of lipid metabolism of Acanthopanacis cortex water extract in rats fed high fat diet. J East Asian Soc Dietary Life 20: 37-45.
  13. Pachauri SD, Tota S, Khandelwal K, Verma PR, Nath C, Hanif K, Shukla R, Saxena JK, Dwivedi AK. 2012. Protective effect of fruits of Morinda citrifolia L. on scopolamine induced memory impairment in mice: a behavioral, biochemical and cerebral blood flow study. J Ethnopharmacol 139: 34-41. https://doi.org/10.1016/j.jep.2011.09.057
  14. Matsumoto S, Mizutani M, Sakata K, Shimizu B. 2012. Molecular cloning and functional analysis of the ortho-hydroxylases of p-coumaroyl coenzyme A/feruloyl coenzyme A involved in formation of umbelliferone and scopoletin in sweet potato, Ipomoea Batatas (L.) Lam. Phytochemistry 74: 49-57. https://doi.org/10.1016/j.phytochem.2011.11.009
  15. Moon PD, Lee BH, Jeong HJ, An HJ, Park SJ, Kim HR, Ko SG, Um JY, Hong SH, Kim HM. 2007. Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the IkappaB/NF-kappaB signal cascade in the human mast cell line HMC-1. Eur J Pharmacol 555: 218-225. https://doi.org/10.1016/j.ejphar.2006.10.021
  16. Ding Z, Dai Y, Wang Z. 2005. Hypouricemic action of scopoletin arising from xanthine oxidase inhibition and uricosuric activity. Planta Med 71:183-185. https://doi.org/10.1055/s-2005-837789
  17. Shaw CY, Chen CH, Hsu CC, Chen CC, Tsai YC. 2003. Antioxidant properties of scopoletin isolated from Sinomonium acutum. Phytother Res 17: 823-825. https://doi.org/10.1002/ptr.1170
  18. Haffner SM, Miettinen H, Stern MP. 1997. The homeostasis model in the San Antonio heart study. Diabetes Care 20: 1087-1092. https://doi.org/10.2337/diacare.20.7.1087
  19. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  20. Bergmeyer HU. 1974. Method of enzymatic analysis. Academic Press, New York, NY, USA. p 28.
  21. Koivula T, Koivusalo M. 1975. Different forms of rat liver aldehyde dehydrogenase and their subcellular distribution. Biochim Biophys Acta 397: 9-23. https://doi.org/10.1016/0005-2744(75)90174-6
  22. Dicker E, McHugh T, Cederbaum AI. 1990. Increased oxidation of p-nitrophenol and aniline by intact hepatocytes isolated from pyrazole-treated rats. Biochim Biophys Acta 1035: 249-256. https://doi.org/10.1016/0304-4165(90)90086-C
  23. Davidson AL, Arion WJ. 1987. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: physiological implications of higher cellular activity. Arch Biochem Biophys 253: 156-167. https://doi.org/10.1016/0003-9861(87)90648-5
  24. Newgard CB, Hirsch LJ, Foster DW, McGarry JD. 1983. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. A direct or an indirect pathway? J Biol Chem 258: 8046-8052.
  25. Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. 1988. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal Biochem 173: 185-189. https://doi.org/10.1016/0003-2697(88)90176-5
  26. Bentle LA, Lardy HA. 1976. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J Biol Chem 251: 2916-2921.
  27. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  28. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  29. Paglia DE, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169.
  30. Wolff SP. 1994. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233: 182-189. https://doi.org/10.1016/S0076-6879(94)33021-2
  31. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  32. Carr RM, Dhir R, Yin X, Agarwal B, Ahima RS. 2013. Temporal effects of ethanol consumption on energy homeostasis, hepatic steatosis, and insulin sensitivity in mice. Alcohol Clin Exp Res 37: 1091-1099. https://doi.org/10.1111/acer.12075
  33. Huang Z, Sjoholm A. 2008. Ethanol acutely stimulates islet blood flow, amplifies insulin secretion, and induces hypoglycemia via nitric oxide and vagally mediated mechanisms. Endocrinology 149: 232-236. https://doi.org/10.1210/en.2007-0632
  34. Macho L, Zorad S, Radikova Z, Patterson-Buckedahl P, Kvetnansky R. 2003. Ethanol consumption effects stress response and insulin binding in tissues of rats. Endocr Regul 37: 195-202.
  35. Nguyen KH, Lee JH, Nyomba B. 2012. Ethanol causes endoplasmic reticulum stress and impairment of insulin secretion in pancreatic $\beta$-cells. Alcohol 46: 89-99. https://doi.org/10.1016/j.alcohol.2011.04.001
  36. Lee Y. 2004. Effect of large amount of alcohol intake on insulin secretion in non-obese NIDDM rats. MS Thesis. Yonsei University, Seoul, Korea.
  37. Jang SM, Kim MJ, Choi MS, Kwon EY, Lee MK. 2010. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice. Metabolism 59: 512-519. https://doi.org/10.1016/j.metabol.2009.07.040
  38. Cederbaum AI. 2001. Introduction-serial review: alcohol, oxidative stress and cell injury. Free Radic Biol Med 31: 1524-1526. https://doi.org/10.1016/S0891-5849(01)00741-9
  39. Han JW, Zhan XR, Li XY, Xia B, Wang YY, Zhang J, Li BX. 2010. Impaired PI3K/Akt signal pathway and hepatocellular injury in high-fat fed rats. World J Gastroenterol 16: 6111-6118. https://doi.org/10.3748/wjg.v16.i48.6111
  40. Shulman GI. 2004. Unraveling the cellular mechanism of insulin resistance in humans: new insights from magnetic resonance spectroscopy. Physiology 19: 183-190. https://doi.org/10.1152/physiol.00007.2004
  41. Postic C, Shiota M, Magnuson MA. 2001. Cell-specific roles of glucokinase in glucose homeostasis. Recent Prog Horm Res 56: 195-217. https://doi.org/10.1210/rp.56.1.195
  42. Kim SY, Kim HI, Kim TH, Im SS, Park SK, Lee IK, Kim KS, Ahn YH. 2004. SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J Biol Chem 279: 30823- 30829. https://doi.org/10.1074/jbc.M313223200
  43. Farfan Labonne BE, Gutierrez M, Gomez-Quiroz LE, Fainstein MK, Bucio L, Souza V, Flores O, Ortiz V, Hernandez E, Kershenobich D. 2009. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol Toxicol 25: 599-609. https://doi.org/10.1007/s10565-008-9115-5
  44. Comporti M, Signorini C, Leoncini S, Gardi C, Ciccoli L, Giardini A, Vecchio D, Arezzini B. 2010. Ethanol-induced oxidative stress: basic knowledge. Genes Nutr 5: 101-109.
  45. Lee HI, Seo KI, Lee J, Lee JS, Hong SM, Lee JH, Kim MJ, Lee MK. 2011. Effect of fermented cucumber beverage on ethanol metabolism and antioxidant activity in ethanoltreated rats. J Korean Soc Food Sci Nutr 40: 1099-1106. https://doi.org/10.3746/jkfn.2011.40.8.1099
  46. Dey A, Cederbaum AI. 2006. Alcohol and oxidative liver injury. Hepatology 43: S63-74. https://doi.org/10.1002/hep.20957
  47. Gaudineau C, Beckerman R, Welbourn S, Auclair K. 2004. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem Biophys Res Commun 318: 1072-1078. https://doi.org/10.1016/j.bbrc.2004.04.139
  48. Sha K, Choi SH, Im J, Lee GG, Loeffler F, Park JH. 2014. Regulation of ethanol-related behavior and ethanol metabolism by the corazonin neurons and corazonin receptor in Drosophila melanogaster. PLoS One 9: e87062. https://doi.org/10.1371/journal.pone.0087062
  49. Jeon CM, Jeong JC. 2007. Effects of iksujisundan on renal function, peroxynitrite scavenging activity and polyol pathway in streptozotocin-induced diabetic rats. J Korean Oriental Med 28: 237-248.
  50. Park DB. 2010. Non-alcoholic fatty liver disease and metabolic syndrome. J Korean Soc Pediatr Endocrinol 15: 77-84
  51. Kathirvel E, Morgan K, French SW, Morgan TR. 2009. Overexpression of liver-specific cytochrome P4502E1 impairs hepatic insulin signaling in a transgenic mouse model of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 21: 973-983. https://doi.org/10.1097/MEG.0b013e328328f461
  52. Lee EH, Chyun JH. 2009. Effects of chongkukjang intake on lipid metabolism and liver function in alcoholic fatty liver rats. J Korean Soc Food Sci Nutr 38: 1506-1515. https://doi.org/10.3746/jkfn.2009.38.11.1506
  53. Lee SJ, Kang MJ, Shin JH. 2013. Effect of black garlic and mugwort extracts on lipids profile during restraint stress. J Korean Soc Food Sci Nutr 42: 577-586. https://doi.org/10.3746/jkfn.2013.42.4.577

Cited by

  1. Supplementation of scopoletin improves insulin sensitivity by attenuating the derangements of insulin signaling through AMPK pp.1573-4919, 2019, https://doi.org/10.1007/s11010-018-3432-7