DOI QR코드

DOI QR Code

Bore-induced Dynamic Responses of Revetment and Soil Foundation

단파작용에 따른 호안과 지반의 동적응답 해석

  • Lee, Kwang-Ho (Dept. of Energy Resources and Plant Eng., Catholic Kwandong Univ.) ;
  • Yuk, Seung-Min (Korea Port Engineering Corp.) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Kim, Tae-Hyeong (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Lee, Yoon-Doo (Dept. of Civil and Environmental Eng., Korea Maritime and Ocean Univ.)
  • 이광호 (가톨릭관동대학교 에너지자원플랜트공학과) ;
  • 육승민 ((주)한국항만기술단) ;
  • 김도삼 (한국해양대학교 건설공학과) ;
  • 김태형 (한국해양대학교 건설공학과) ;
  • 이윤두 (한국해양대학교 대학원 토목환경공학과)
  • Received : 2015.02.05
  • Accepted : 2015.02.25
  • Published : 2015.02.28

Abstract

Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The coastal structure targeted object in this study can be damaged mainly by the wave pressure together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the bore was generated using the water level difference, its propagation and interaction with a vertical revetment analyzed by applying 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the surface boundary of the vertical revetment estimated by this model. Simulation results were used as input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure ratio, effective stress path, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

지진해일파(tsunami)에 의한 피해로 소중한 인명손실뿐만 아니라 침수 범람에 의한 가옥과 같은 건물의 유실, 그리고 방파제, 교량 및 항만과 같은 사회간접자본의 심각한 파괴 등을 들 수 있다. 본 연구의 대상인 연안구조물에서 피해원인으로 먼저 큰 작용파력을 고려할 수 있지만, 또한 기초지반에서 세굴과 액상화와 같은 지반파괴를 고려할 수 있다. 진동성분과 잔류성분으로 구성되는 과잉간극수압의 증가에 따른 유효응력의 감소로 해저지반 내에 액상화의 가능성이 나타나고, 액상화가 발생되면 그의 진행에 따라 구조물의 침하 혹은 전도에 의해 종국적으로 구조물이 파괴될 가능성이 높아지게 된다. 본 연구에서는 수위차를 이용하여 단파를 발생시키고, 그의 전파 및 직립호안과의 상호작용을 2D-NIT(Two-Dimensional Numerical Irregular wave Tank)모델로부터 해석한다. 이러한 결과로부터 직립호안 및 해저지반상에서 시간변동의 동파압을 지반의 동적응답과 구조물의 동적거동을 정밀하게 재현 할 수 있는 유한요소법에 기초한 탄 소성해저지반응답의 수치해석프로그램인 FLIP(Finite element analysis LIquefaction Program)모델에 입력치로 적용하여 해저지반 및 직립호안의 주변에서 과잉간극수압비와 유효응력경로의 시 공간변화, 지반변형, 구조물의 변위 및 지반액상화 등을 정량적으로 평가하여 직립호안의 안정성을 평가한다.

Keywords

References

  1. CDIT(2001). Research and development of numerical wave channel(CADMAS-SURF), CDIT library, 12, Japan.
  2. Chen, Y., Lai, X., Ye, Y., Huang, B. and Ji, M. (2005). Water-induced pore water pressure in marine cohesive soils, Acta Oceanologica Sinica, 24(4), 138-145.
  3. Cheng, L., Sumer, B.M. and Fredsoe, J. (2001). Solutions l of pore pressure build up due to progressive waves, Intl. J. for Numerical and Analytical Methods in Geomechanics, 25, 885-907. https://doi.org/10.1002/nag.159
  4. Hirt, C.W. and Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries, J. of Computational Physics, 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  5. Iai, S., Matsunaga, Y. and Kameoka, T. (1992a). Strain space plasticity model for cyclic mobility, Soils and Foundations, JSSMFE, 32(2), 1-15.
  6. Iai, S., Matsunaga, Y. and Kameoka, T. (1992b). Analysis of undrained cyclic behavior of sand under anisotropic consolidation, Soils and Foundation, JSMFE, 32(2), 16-20.
  7. Ishihara, K. and Yamazaki, A.(1984). Analysis of wave-induced liquefaction in seabed deposits of sand, Soils and Foundations, JSMFE, 24(3), 85-10.
  8. Imase, T., Maeda, K. and Miyake, M. (2012). Destabilization of a caisson-type breakwater by scouring and seepage failure of the seabed due to a tsunami, ICSE6-128, Paris, 807-814.
  9. Jeng, D.S. (1997). Wave-induced seabed response in front of a breakwater, PhD thesis, Univ. of Western Australia.
  10. Jeng, D.S. and Hsu, J.R.C. (1996). Wave-induced soil response in a nearly saturated seabed of finite thickness, Geotechnique, 46(3), 427-440. https://doi.org/10.1680/geot.1996.46.3.427
  11. Jeng, D.S. and Seymour, B.R. (2007). Simplified analytical approximation for pore-water pressure buildup in marine sediments, J. of Waterway, Port, Coastal, and Ocean Eng., ASCE, 133, 309-312. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:4(309)
  12. Jeng, D.S, Seymour, B. and Li, J. (2006). A new approximation for pore pressure accumulation in marine sediment due to water waves, Research Report No.R868, The Univ. of Sydney, Australia.
  13. Jeng, D.S., Zhou, X.L., Luo, X.D., Wang, J.H., Zhang, J. and Gao, F.P. (2010). Response of porous seabed to dynamic loadings, Geotechnical Eng. J. of the SEAGS & AGSSEA, 41(4).
  14. Kang, G.C., Yun, S.K., Kim, T.H. and Kim, D.S. (2013). Numerical analysis on settlement behavior of seabed sand-coastal structure subjected to wave loads, J. of Korean Society of Coastal and Ocean Engineers, 25(1), 20-27. https://doi.org/10.9765/KSCOE.2013.25.1.20
  15. Kianoto, T. and Mase, H. (1999). Boundary-layer theory for anisotropic seabed response to sea waves, J. of Waterway, Port, Coastal and Ocean Eng., ASCE, 125(4), 187-194. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(187)
  16. Ko, H.Y. (1988). Summary of the state-of-the-art in centrifuge model testing, Centrifuges in Soil Mechanics, Craig W.H., James R.G. & Schofield A.N. eds., Balkema, Rotterdam, 11-18.
  17. Li, J. and Jeng, D.S. (2008). Response of a porous seabed around breakwater heads, Ocean Eng., 35, 864-886. https://doi.org/10.1016/j.oceaneng.2008.01.021
  18. Lee, K.H., Baek, D.J., Kim, D.S., Kim, T.H. and Bae, K.S. (2014a). Numerical simulation on seabed-structure dynamic responses due to the interaction between waves, seabed and coastal structure, J. of Korean Society of Coastal and Ocean Engineers, 26(1), 49-64. https://doi.org/10.9765/KSCOE.2014.26.1.49
  19. Lee, K.H., Baek, D.J., Kim, D.S., Kim, T.H. and Bae, K.S. (2014b). Numerical simulation of dynamic response of seabed and structure due to the interaction among seabed, composite breakwater and irregular waves(1), J. of Korean Society of Coastal and Ocean Engineers, 26(3), 160-173. https://doi.org/10.9765/KSCOE.2014.26.3.160
  20. Lee, K.H., Baek, D.J., Kim, D.S., Kim, T.H. and Bae, K.S. (2014c). Numerical simulation of dynamic response of seabed and structure due to the interaction among seabed, composite breakwater and irregular waves(2), J. of Korean Society of Coastal and Ocean Engineers, 26(3), 174-183. https://doi.org/10.9765/KSCOE.2014.26.3.174
  21. Lee, K.H., Kim, C.H., Kim, D.S., Yeh, H. and Hwang, Y.T. (2009a). Numerical analysis of runup and wave force acting on coastal revetment and onshore structure due to tsunami, J. of Korean Society of Civil Engineers, KSCE, 29(3B), 289-301.
  22. Lee, K.H., Kim, C.H., Kim, D.S. and Hwang, Y.T. (2009b). Numerical analysis of wave transformation of bore in 2-dimensional water channel and resultant wave loads acting on 2-dimensional vertical structure, J. of Korean Society of Civil Engineers, KSCE, 29(5B), 473-482.
  23. Lee, K.H., Kim, C.H., Hwang, Y.T. and Kim, D.S. (2008a). Applicability of CADMAS-SURF code for the variation of water level and velocity due to bores, J. of Ocean Eng. and Technology, KSOE, 22(5), 52-60.
  24. Lee, K.H., Kim, D.S. and Yeh, H. (2008b). Characteristics of water level and velocity changes due to the propagation of bore, J. of Korean Society of Civil Engineers, KSCE, 28(5B), 575-589.
  25. Lee, K.H., Park, J.H., Cho, S. and Kim, D.S. (2013). Numerical simulation of irregular airflow in OWC wave generation system considering sea water exchange, J. of Korean Society of Coastal and Ocean Engineers, 25(3), 128-137. https://doi.org/10.9765/KSCOE.2013.25.3.128
  26. Lee, K.L. and Focht, J.A.(1975). Liquefaction potential of Ekofisk Tank in North Sea, J. of the Geotechnical Eng. Division, ASCE, 100, 1-18.
  27. Madsen, O.S. (1978). Wave-induced pore pressure and effective stresses in a porous bed, Geotechnique, 28, 377-393. https://doi.org/10.1680/geot.1978.28.4.377
  28. Mase, H., Sakai, T. and Sakamoto, M. (1994). Wave-induced pore-water pressures and effective stresses around breakwater, Ocean Eng., 21(4), 361-379. https://doi.org/10.1016/0029-8018(94)90010-8
  29. McDougal, W.G., Tsai, Y.T., Liu, P. L.-F. and Clukey, E.C. (1989). Wave-induced pore water pressure accumulation in marine soils, J. of Offshore Mechanics and Arctic Eng., ASME, 111(1), 1-11. https://doi.org/10.1115/1.3257133
  30. Mei, C.C. and Foda, M.A. (1981). Wave-induced response in a fluid-filled poroelastic solid with a free surface-A boundary layer theory, Geophysical J. of the Royal Astrological Society, 66, 597-631. https://doi.org/10.1111/j.1365-246X.1981.tb04892.x
  31. Miyake, T.(2014). A study on the tsunami disaster mechanism on coastal structures due to instability of rubble mound and seabed ground and its countermeasure, Doctoral Thesis, Nagoya Institute of Technology.
  32. Miyake, T., Sumida, H., Maeda, K., Sakai, H., and Imase, T. (2009). Development of centrifuge modelling for tsunami and its application to stability of a caisson-type breakwater, J. of Civil Eng. in the Ocean, 25, 87-92.
  33. Miyamoto, J., Sassa, S. and Sekiguchi, H. (2004). Progressive solidification of a liquefied sand layer during continued wave loading, Geotechnique, 54(10), 617-629. https://doi.org/10.1680/geot.2004.54.10.617
  34. Norio, O., Ye, T., Kajitani, Y., Shi, P., Tatano, H. (2011). The 2011 eastern Japan great earthquake disaster: overview and comments. Intl. J. of Disaster Risk Science, 2(1), 34-42. https://doi.org/10.1007/s13753-011-0004-9
  35. Okusa, S. (1985). Wave-induced stresses in unsaturated submarine sediments, Geotechnique, 32(3), 235-247. https://doi.org/10.1680/geot.1982.32.3.235
  36. Ozutsmi, O., Sawada, S., Iai, S., Takeshima, Y., Sugiyama, W. and Shimasu, T. (2002). Effective stress analysis of liquefaction-induced deformation in river dikes, J. of Soil Dynamics and Earthquake Eng., 22, 1075-1082. https://doi.org/10.1016/S0267-7261(02)00133-1
  37. Rahman, M. S., Seed, H. B. and Booker, J. R.(1977), Pore pressure development under offshore gravity structures, J. of the Geotechnical Eng. Division, ASCE, 103, 1419-1436.
  38. Sassa, S. and Sekiguchi, H. (1999). Analysis of wave-induced liquefaction of beds of sand in centrifuge, Geotechnique, 49(5), 621-638. https://doi.org/10.1680/geot.1999.49.5.621
  39. Sassa, S. and Sekiguchi, H. (2001). Analysis of wave-induced liquefaction of sand beds, Geotechnique, 51(12), 115-126. https://doi.org/10.1680/geot.2001.51.2.115
  40. Sassa, S., Sekiguchi, H. and Miyamoto, J. (2001). Analysis of progressive liquefaction as a moving-boundary problem, Geotechnique, 51(10), 847-857. https://doi.org/10.1680/geot.2001.51.10.847
  41. Sakakiyama, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interaction with permeable breakwater, Proceedings of the 22nd ICCE, ASCE, 1517-1530.
  42. Sawada, S., Ozutsumi, O. and Iai, S. (2000). Analysis of liquefaction induced residual deformation for two types of quay wall: analysis by "FLIP", Proceedings of the 12th World Conference on Earthquake Eng., No.2486.
  43. Seed, H.B. and Rahman, M.S. (1978). Wave-induced pore pressure in relation to ocean floor stability of cohesionless soil, Marine Geotechnology, 3(2), 123-150. https://doi.org/10.1080/10641197809379798
  44. Seed, H.B., Martin, P. O. and Lysmer, J. (1975). The generation and dissipation of pore water pressure during soil liquefaction, Report EERC 75-26, Univ. of California, Berkeley, California.
  45. Sekiguchi, H., Kita, K. and Okamoto, O. (1995). Response of poroelastoplastic beds to standing waves, Soil and Foundations, JSSMFE, 35(3), 31-42.
  46. Sumer, B.M. and Fredsoe, J. (2002). The mechanics of scour in the marine environment, World Scientific.
  47. Tonkin, S., H. Yeh, F. Kato, and S. Sato (2003). Tsunami scour around a cylinder, J. of Fluid Mech., 496, 165-192. https://doi.org/10.1017/S0022112003006402
  48. Tsai, C.P. and Lee, T.L. (1995). Standing wave induced pore pressures in a porous seabed, Ocean Eng., 22(6), 505-517. https://doi.org/10.1016/0029-8018(95)00003-4
  49. Ulker, M.B.C, Rahman, M.S. and Guddati, M.N. (2010). Wave-induced dynamic response and instability of seabed around caisson breakwater, Ocean Eng., 37, 1522-1545. https://doi.org/10.1016/j.oceaneng.2010.09.004
  50. Yamamoto, T., Koning, H., Sllmejjer, H. and Van Hijum, E. (1978). On the response of a poroelastic bed to water waves, J. of Fluid Mechanics, 87, 193-206. https://doi.org/10.1017/S0022112078003006
  51. Ye, J., Jeng, D., Liu, P. L.-F., Chan, A.H.C, Ren, W. and Changqi, Z. (2014). Breaking wave-induced response of composite breakwater and liquefaction in seabed foundation, Coastal Eng., 85, 72-86. https://doi.org/10.1016/j.coastaleng.2013.08.003
  52. Yeh, H. and Mason, H.B. (2014). Sediment response to tsunami loading : mechanisms and estimates, Geotechnique, 64(2), 131-143. https://doi.org/10.1680/geot.13.P.033
  53. Young, Y.L., White, J.A., Xiao, H., Borja, R.I., 2009. Liquefaction potential of coastal slopes induced by solitary waves. Acta Geotechnica, 4(1), 17-34. https://doi.org/10.1007/s11440-009-0083-6
  54. Yuhi, M. and Ishida, H. (2002). Simplified solution of wave-induced seabed response in anisotropic seabed, J. of Waterway, Port, Coastal and Ocean Eng., ASCE, 128(1), 46-50. https://doi.org/10.1061/(ASCE)0733-950X(2002)128:1(46)