DOI QR코드

DOI QR Code

사질토지반에서 그룹 마이크로파일의 설치조건에 따른 인발거동특성

Uplift Behavior of Group Micropile according to Embedded Pile Condition in Sand

  • 경두현 (연세대학교 토목환경공학과) ;
  • 김가람 (연세대학교 토목환경공학과) ;
  • 박대성 (연세대학교 토목환경공학과) ;
  • 김대홍 (한국전력공사 전력연구원) ;
  • 이준환 (연세대학교 토목환경공학과)
  • 투고 : 2014.09.05
  • 심사 : 2015.02.13
  • 발행 : 2015.02.28

초록

마이크로파일은 직경 300mm 이하의 소규모 말뚝기초형식으로, 기초구조물의 보강을 위해 널리 적용되고 있다. 본 연구에서는 일련의 인발재하시험을 통하여 그룹 마이크로파일의 설치조건에 대한 영향을 조사하였다. 본 연구를 위하여, 다양한 설치간격과 설치각도로 설치된 그룹 마이크로파일을 이용한 인발재하시험을 수행하였으며, 실험결과를 통해 인발지지력 증가특성과 인발변위 감소특성을 조사하였다. 인발저항력은 주로 마이크로파일의 설치각도에 영향을 받는 것으로 나타났으며, 인발저항력의 증가는 설치각도 15도, 30도, 45도에서 각각 33%, 59%, 5%가 증가되는 것으로 나타났다. 설치간격에 따른 인발변위의 감소량은 더 좁은 설치간격조건에서 크게 나타났으며, 동일한 설치간격조건에서의 설치각도에 따른 인발변위 저감율은 설치각도 15도, 30도, 45도에서 각각 50%, 53%, -45%가 되는 것으로 나타났다.

The micropile is small diameter pile foundation of which diameter is below 300 mm. This system has been applied to reinforce the foundation structure. In the present study, the effects of embedded conditions of group micropiles were investigated from a series of uplift load tests. For the study, uplift load tests were performed using group micropiles in various pile spacing and installation angle. The increase of uplift resistance and the reduction of uplift displacement were investigated in the tests. As the result, the resistances were principally changed by embedded pile angle, the resistance increase were 33%, 59% and 5% for $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of embedded pile angle. The uplift displacement reduction increases with lower pile spacing condition and the reduction ratios of uplift displacements in the same spacing condition were 50%, 53%, -45% for $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of embedded pile angle.

키워드

참고문헌

  1. ASTM (2006a), "Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table", American Society for Testing and Materials, ASTM D4253-00(2006).
  2. ASTM (2006b), "Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density", American Society for Testing and Materals, ASTM D4254-00(2006).
  3. Bassett, R. H. and Last, N. C. (1978), "Reinforcing Earth below Footings and Embankments", Proc., ASCE, Symp., Earth reinforcement, Pittsburgh, pp.202-231.
  4. Choi, Y. H., Kyung, D. H., and Lee, J. H. (2013), "Finite Element Analysis for Transmission Tower Behavior Characteristic by Connection Beam Stiffness", J. of the Korean Society of Civil Engineering, Vol.33, No.1, pp.219-227. https://doi.org/10.12652/Ksce.2013.33.1.219
  5. FHWA (2005), "Micropile Design and Construction Reference Manual", U.S. Department of Transportation Federal Highway Administration, FHWA NHI-05-039.
  6. Gholamreza, S. and Reza, N. (2011), "Effects of Slenderness Ratio on Seismic behavior of Vertical Micropiles", Proc. ASCE, Geotechnical risk assessment and management (GeoRisk 2011), Atlanta, pp.352-360.
  7. Han, J. and Ye, S. (2006), "A Field Study on the behavior of Micropiles in Clay Under Compression or Tension", Canadian Geotechnical Journal, Vol.43, pp.19-29. https://doi.org/10.1139/t05-089
  8. Hong, W. P., Cho, S. D., Choi, C. H., and Lee, C. M. (2012), "Skin Friction Mobilized on Pack Micropiles Subjected to Uplift Force", J. of the Korean Geotechnical Society, Vol.28, No.6, pp.19-29. https://doi.org/10.7843/kgs.2012.28.6.19
  9. KEPCO (2014), "Development of Foundation Type of the Transmission of Electricity Tower Using Micro-pile", Korea Electric Power Corporation (KEPCO), Korea Electric Power Research Institute (KEPRI), R13TG01.
  10. Kim, W. C., Cho, C. H., and Lee, J. H. (2002), "Micropile - Concept and Classification of Micropile", Korean Geo-Environmental Society, Technical article : Geo-environmental, Vol.3, No.4, pp.24-79.
  11. Kim, W. C, Cho, C. H., and Lee, J. H. (2003), "Design of Micropile", Korean Geo-Environmental Society, Technical article : Geo-environmental, Vol.3, No.4, pp.72-79.
  12. Kyung, D. H., Lee, J. H., Paik, K. H., and Kim, D. H. (2011), "The Failure Standard to Estimate the Behavior and Bearing Capacity for Connected-type Foundation of Transmission Tower in Clay", J. of Korean Geotechnical Society, Vol.27, No.3, pp.27-40. https://doi.org/10.7843/kgs.2011.27.3.027
  13. Kyung, D. H., Lee, J. H., Paik, K. H., Kim, D. H., and Kim, D. H. (2012a), "The Behavior and Resistance of Connected-pile Foundation for Transmission Tower from In-situ Lateral Load Tests", J. of Korean Geotechnical Society, Vol.28, No.2, pp.57-70. https://doi.org/10.7843/kgs.2012.28.2.57
  14. Kyung, D. H., Lee, J. H., Paik, K. H., and Kim, D. H. (2012b), "Resistance Increasing Factor of Connected-pile Foundation for Transmission Tower in Clay", J. of Korean Geotechnical Society, Vol.28, No.8, pp.31-41. https://doi.org/10.7843/kgs.2012.28.8.31
  15. Kyung, D. H., Lee, J. H., Paik, K. H., Kim, Y. J., and Kim, D. H. (2013), "Analysis of Characteristics of Connected-pile Foundations for Transmission Tower according to Changes of Load and Connection Beam Conditions in Clay", J. of Korean Geotechnical Society, Vol.29, No.10, pp.5-18. https://doi.org/10.7843/kgs.2013.29.10.5
  16. Lee, T. H. and Im, J. C. (2006), "An Experimental Study on the Reinforcement Effect of Installed Micropiles in the Surround of Footing on Dense Sand", J. of the Korean Geotechnical Society, Vol.22, No.5, pp.69-81.
  17. Lee, W. T. (1991), "A Study on Reinforcing Effect of Reticulated Root Piles on Shallow Footing", a doctor's thesis, Seoul National Univ.
  18. Lizzi, F. and Carnevle, G. (1979), "Les Reseaux de Pieux Racines Pour la Consolidation des sols, Ascepts Theoretique et Essais sur Mondile", Proc. Int. Conf., Soil Reinforcement, Paris, Vol.2, pp. 317-324.
  19. Robinsky, E. I. and Morrison, C. F. (1964), "Sand Displacement and Compaction Around Model Friction Piles", Canadian Geotechnical Journal, Vol.1, No.2, pp.81-93. https://doi.org/10.1139/t64-002
  20. Roh, K. K., Park, S. H., and Cho, K. H. (2007), "Development of an Empirical Equation for Estimating Load Transfer Curves for Micropile in Weathered Sand", J. of the Korean Geotechnical Society, Vol.23, No.1, pp.5-11.
  21. Sabatini, P. J., Pass, D. G., and Bachus, R. C. (1999), "Geotechnical Engineering Circular No.4 Ground Anchors and Anchored System", Office of Bridge Technology Federal Highway Administration, FHWA-SA-99-015.
  22. Tsukada, Y., Miura, K., Tsubokawa, Y., Otani, Y., and You, G.L. (2006), "Mechanism of Bearing Capacity of Spread Footings Reinforced with Micropiles", Soils and Foundations, Vol.46, No.3, pp.367-376. https://doi.org/10.3208/sandf.46.367
  23. You, G. L., Miura, K., and Ishito, M. (2003), "Behavior of Micropile Foundations under Inclined Loads in Laboratory Tests", Lowland Technology International, International Association of Lowland Technology (IALT), Vol.5, No.2, pp.16-26.