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Studies of cancer heterogeneity have received considerable attention recently, because the presence or absence of resistant 
sub-clones may determine whether or not certain therapeutic treatments are effective. Previously, we have reported G64, a 
co-regulated gene module composed of 64 different genes, can differentiate tumor intra- or inter-subpopulations in lung 
adenocarcinomas (LADCs). Here, we investigated whether the G64 module genes were also expressed distinctively in 
different subpopulations of other cancers. RNA sequencing-based transcriptome data derived from 22 cancers, except LADC, 
were downloaded from The Cancer Genome Atlas (TCGA). Interestingly, the 22 cancers also expressed the G64 genes in a 
correlated manner, as observed previously in an LADC study. Considering that gene expression levels were continuous among 
different tumor samples, tumor subpopulations were investigated using extreme expressional ranges of G64—i.e., tumor 
subpopulation with the lowest 15% of G64 expression, tumor subpopulation with the highest 15% of G64 expression, and 
tumor subpopulation with intermediate expression. In each of the 22 cancers, we examined whether patient survival was 
different among the three different subgroups and found that G64 could differentiate tumor subpopulations in six other 
cancers, including sarcoma, kidney, brain, liver, and esophageal cancers.
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Introduction

Different tumors or cancers in different patients have 
distinct genetic and cellular profiles, including kinds of 
genetic mutations, patterns of gene expression, and meta-
static potential, which is often called cancer heterogeneity. 
The heterogeneity occurs both within and between tumors 
and leads to intra-tumor heterogeneity and inter-tumor 
heterogeneity, respectively [1-3]. Understanding cancer 
heterogeneity has recently been one of the important 
research subjects, because it is the base of difficulty in 
developing effective cancer treatments. 

Tumor heterogeneity is basically due to the different 
origins of tumor cells or tissues. Various biological factors, 
such as smoking, gender, age, or hormonal status, can 
influence cancer initiation or progression, as well. Fund-
amentally, there are genetic variations among the hosts, even 
for the same cancer [4-6]. Astonishingly rapid development 

of massively parallel sequencing, alternatively called next- 
generation sequencing technologies, has recently elucidated 
the extent of tumor heterogeneity, and several hundred 
somatic mutations and structural variants that drive cancers 
have been identified [7-9].

Previously, we reported the characterization of the 
heterogeneity of human lung adenocarcinomas (LADCs) 
from patient-derived xenografts via single-cell transcri-
ptome sequencing [10]. These cells were categorized into 
two separate subpopulations based on their expression of a 
module gene named G64. We found that G64 up- 
regulation/down-regulation was also present in patient 
tissue samples obtained from the Cancer Genome Atlas 
(TCGA), with G64 up-regulation corresponding to poor 
survival and associated with multiple clinical variables, such 
as smoking status (which exhibited the highest correlation) 
and tumor stage. 

In the present study, we investigated if G64 can diffe-
rentiate tumor subpopulations in other cancers, as well. 
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Table 1. List of the 22 cancers

Types of cancers Total Extreme P1 P2 P3

Kidney renal clear cell carcinoma 531 160 0.000* 0.146 0.000* 
Brain lower-grade glioma 514 154 0.001* 0.220 0.000* 
Liver hepatocellular carcinoma 351 106 0.001* 0.291 0.041*
Kidney renal papillary cell carcinoma 289 86 0.007* 0.488 0.000* 
Esophageal carcinoma 184 56 0.018* 0.731 0.027* 
Sarcoma 257 78 0.036* 0.019* 0.604 
Pancreatic adenocarcinoma 178 54 0.053 0.920 0.931 
Stomach adenocarcinoma 373 112 0.116 0.999 0.114 
Cervical squamous cell carcinoma and endocervical 

adenocarcinoma
302 90 0.157 0.355 0.469 

Head and neck squamous cell carcinoma 514 154 0.335 0.427 0.258 
Colon adenocarcinoma 192 58 0.412 0.188 0.017 
Acute myeloid leukemia 173 52 0.457 0.731 0.027 
Thyroid carcinoma 505 152 0.461 0.028 0.640 
Skin cutaneous melanoma 467 140 0.628 0.844 0.822 
Lung squamous cell carcinoma 501 150 0.679 0.720 0.724 
Breast invasive carcinoma 1092 328 0.818 0.009 0.016 
Ovarian serous cystadenocarcinoma 263 78 0.878 0.863 0.172 
Glioblastoma multiforme 161 48 0.883 0.760 0.134 
Bladder urothelial carcinoma 407 122 0.912 0.115 0.131 
Prostate adenocarcinoma 486 146 0.978 0.488 0.000 
Pheochromocytoma and paraganglioma 179 54 0.999 0.999 0.999 
Testicular germ cell tumors 150 44 NA 0.728 0.835 

P1, P2, and P3 indicate three different comparisons: the highest 15% versus the lowest 15%, the lowest 15% versus the intermediate, 
and the highest 15% versus the intermediate, respectively.
*Significant comparisons of p＜0.05.

Methods
Websites for downloading RNA sequencing (RNA-seq) 
data for 22 cancer datasets

The TCGA website (https://tcga-data.nci.nih.gov/tcga/ 
tcgaHome2.jsp) was used for downloading RNA-seq-based 
transcriptome data and patient survival information for 22 
cancers. The RNA-seq data downloaded for each cancer are 
listed in Table 1 and Supplementary Table 1. As described in 
the previous report [10], expression values of 0＜FPKM 
(fragments per kilobase of exon per million fragments 
mapped)＜0.1 were all converted to 0.1 to avoid the infinity 
problem. Each FPKM value of each gene was divided by the 
average FPKM estimated for the total patient samples where 
the gene is expressed and was log2-transformed, for which 
heat map analysis combined with hierarchical clustering was 
performed with the ‘hclust’ function of R package (https:// 
stat.ethz.ch/R-manual/R-patched/library/stats/html/hclus
t.html).

Statistical tests

We used R (v 3.1.3) for all statistical tests (https://cran. 
r-project.org/). Using the factoMineR (http://factominer. 

free.fr) and rgl (https://r-forge.r-project.org/projects/rgl/) 
packages, principal component analysis (PCA) and visuali-
zation were performed [11]. The survival packages were 
used (http://r-forge.r-project.org) to compare patient survival 
rates and draw Kaplan-Meier plots. The coxph function in 
the survival packages was used for performing the Cox 
regression analysis [12, 13]. 

Results
Selection of two extreme patient groups and one 
intermediate group determined by G64 expression

The G64 genes were originally identified by their co- 
regulated expression pattern in single cells derived from a 
single LADC tumor region [10]. Interestingly, we have 
reported that 488 LADC patients samples downloaded from 
the TCGA were also separated into two distinct groups by 
the G64 genes. In the present work, we examined whether 
G64 could be a classifier for other cancers, as well. For this 
analysis, 22 RNA-seq-based transcriptome data with a sam-
ple size ≥150 were retrieved from the TCGA. The threshold 
of 150 was selected, because it was considered to be the 
minimum number of samples for statistical tests between 
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Fig. 1. Heat map, principal compo-
nent analysis (PCA), and Kaplan Meier
(KM) plot analysis of G64 in kidney 
renal clear cell carcinoma (KIRC). (A)
Heat map was plotted using the 160 
samples corresponding to the highest 
15% and lowest 15% of G64 exp-
ression among the total of 531 KIRC
samples. (B) A PCA plot of G64 
expression was performed using the 
531 KIRC samples. Low, the lowest 
15% group; INT, intermediate group;
High, the highest 15% group. (C) KM
analysis of the 531 KIRC samples 
based on the average G64 expression.
Cox regression analysis was used to 
investigate whether the survival dura-
tion of the two different groups was 
significantly different (p＜0.001), as 
shown in Table 1.

different groups (Table 1, Supplementary Table 1).
As done in the previous LADC study [10], heat map 

analysis was performed for each cancer type to see how 
patient samples were separated by G64 (Supplementary Fig. 
1). As shown in Supplementary Fig. 1, the co-regulated 
patterns of G64 expression were confirmed in all types of 
cancers we tested. However, distinct two-group separations 
were not as evident as the case for LADC. Therefore, we 
classifies patient samples further into three different cate-
gories by using a 15% extreme threshold of G64 expression 
(Supplementary Fig. 2): the highest 15% group, the lowest 
15% group, and an intermediate group. For this purpose, the 
patients were sorted out by the intensity of the average 
FPKM values of the G64 genes expressed in each patient. As 
a result, for instance, among a total of 531 kidney renal clear 
cell carcinoma (KIRC) samples, 160 samples were assigned 
into the two extreme groups—the highest 15% and the 
lowest 15%—whereas the remaining 371 samples were 
classified into the intermediate group. 

G64 up-regulating cancers tend to have a poor 
prognosis in six different cancers

We next investigated whether patient survival was signi-
ficantly different in these three groups classified by the 
average intensity of G64 expression. Patient survival rates 
were compared among the three patient groups for each of 
the 22 cancers. As done in the LADC study, we performed 
Kaplan-Meier analysis using the patients’ survival data 
obtained from the TCGA in each type of cancer. Survival 
rates were compared between the lowest 15% versus highest 
15% groups (i.e., P1 comparison in Table 1), the lowest 15% 
versus intermediate groups (i.e., P2 comparison in Table 1), 
and the intermediate versus highest 15% groups (i.e., P3 
comparison in Table 1). PCA confirmed the groups’ sepa-
rations by G64 expression (Fig. 1, Supplementary Fig. 3–7). 
As summarized in Table 1, only six cancers were shown to 
have statistically significant differences between groups, 
including KIRC, brain lower grade glioma, liver hepa-
tocellular carcinoma, kidney renal papilloma cell carcinoma, 
esophageal carcinoma, and sarcoma. In all comparisons 
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Fig. 2. KM analysis of combined 
samples of cancers on expression of 
G64. (A) KM plot of the combined six
samples of the survival-differentiating
cancers by G64, including kidney 
renal clear cell carcinoma, brain 
lower-grade glioma, liver hepatoce-
llular carcinoma, kidney renal papi-
lloma cell carcinoma, esophageal car-
cinoma, and sarcoma (see Table 1, 
upper six cancers). (B) KM plot of the 
16 remaining samples of the survival-
non-differentiating cancers (see Table 
1, lower 16 cancers). Low, the lowest
15% group; INT, intermediate group;
High, the highest 15% group; HR, 
hazard ratio; 95% CI, 95% confi-
dence interval.

between groups in these 6 cancers, G64 up-regulation was 
consistently observed to be associated with worse patient 
prognosis in the Cox regression analysis (Fig. 1, Supple-
mentary Fig. 3–8). 

The 22 cancers were subsequently divided into two batches: 
i.e., six survival-differentiating cancers and 16 survival- 
non-differentiating cancers. After the RNA-seq samples 
from the 22 cancers were collected as separate batches, we 
examined the aspect of survival difference by G64 expression 
in each batch. Consequently, the survival-differentiating 
batch, mixing up six different cancer samples (531 ＋ 514 ＋ 

351 ＋ 289 ＋ 184 ＋ 257 = 2,126 samples), clearly maintained 
the survival differentiation among the lowest 15%, the 
highest 15%, and the intermediate groups (Fig. 2), whereas 
the survival-non-differentiating batch, mixing up 16 
different cancer samples (178 ＋ 373 ＋ 302 ＋ …. ＋ 179 ＋ 

150 = 5943 samples), showed no survival difference among 
the three different groups determined by G64 expression 
levels (Fig. 2). Taken together, the G64 genes can differe-
ntiate cancer samples by their survival rate differences in 
cancers other than LADC.

Discussion

Basically, it was an interesting finding that genes, named 
the G64 module in our previous study (i.e., a highly co- 
regulated gene group), can classify not only single cells 
derived from a single tumor but also tumors that have 
originated from several different cancers. Various biomar-
kers have been identified and developed for molecular dia-
gnostics in cancers. In fact, numerous genes included in the 
list of the G64 module have already been identified as cancer 
diagnostic or prognostic markers by several independent 

researchers [14-16]. For instance, CDCA5 and NCAPH have 
been characterized to be highly expressed in lung cancers 
[17, 18]. Our previous study showed that cell cycle genes 
were a main functional GO category in the G64 module. 
Consistently, dysregulation of the cell cycle has long been 
proven to be a critical process causing cancers [19-22]. 
However, to our knowledge, it was the first finding ever that 
G64 genes were co-regulated in various cancers, and patient 
prognosis can be differentiated by these genes. Here, we 
clearly showed that the G64 module can be a good bio-
marker, predicting cancer prognosis at least for six different 
cancers—i.e., seven different cancers if LADC is included. 

It is unclear what common molecular characteristics the 
seven cancers (i.e., 6 cancers in the present study and LADC) 
share together other than co-regulated G64 expression. The 
seven cancers must be initiated and progress by different 
genetic or environmental causes and pathways, and there is 
no proper explanation for the common subpopulation 
differentiation carried through G64 expression. It is also 
hard to explain at this moment why the 64 genes are 
co-regulated on an inter-tumoral level and intra-tumoral 
level and why up-regulating patients tend to have a poor 
prognosis. One possibility we can think of is that expression 
of these genes may be associated with drug metabolism, 
contributing to drug sensitivity or drug resistance. It will be 
interesting to study further how expression of G64 is 
changed during the recurrence of cancers. Taken together, 
G64 genes would be a good candidate of developing 
prognostic markers for multiple cancers.

Supplementary materials

Supplementary data, including one table and eight figures, 
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can be found with this article online at http://www. 
genominfo.org/src/sm/gni-13-132-s001.pdf.
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