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1. Introduction

The present author recently introduced micanorms (binary 

monotonic identity commutative aggregation operations on the real 

unit interval [0, 1]) and logics based on micanorms in Yang 

(2015). In particular, he provided standard completeness results for 

involutive such logics, which was a problem left open in Horčík

(2011), using the Jenei-Montagna-style construction introduced in 

Esteva et al. (2002) and Jenei & Montagna (2002). After 

providing such completeness, he stated as follows in Remarks 2 

and 3, respectively:

The proof of standard completeness in Theorem 5 does not 

work for IMICASIL because the definition of ⊙ does not 

satisfy contraction. … Let FIMICASIL be IMICASIL plus (FP). 

The proof in Theorem 5 instead works for FIMICA SIL. We 

leave its proof to the interested reader(Yang (2015), p. 54).

Wang defined a new monoid ⊙ based on Wang's monoid ○W

for involution and provided standard completeness for CnIU L in 

Wang (2013). Since Yang's monoid ○Y″̋ is also Wang's 

monoid, we can also define such a monoid based on ○Y″̋ and 

provide standard completeness results for CnIUL and similarly 

for IMICAL and CnIMICAL(Yang (2015), p. 57).

Let φn stand for ((…(φ & φ) & … ) & φ) & φ, n φ’s. The 

systems IMICASIL, FIMICASIL, and CnIMICAL are the 

involutive micanorm logic IMICAL with (S-INC) φ → (φ & φ), 

the IMICASIL with (FP) t ↔ f, and the IMICAL with (N-P) φn

→ φn-1, 2≤n, respectively. As the statements in Remark 2 show, 

although he insists that the proof in Theorem 5 (the standard 
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completeness using the construction in the style of 

Jenei-Montagna) is applicable to FIMICASIL, he does not provide 

its proof, and similarly for CnIMICAL in Remark 3. 

In this paper, we show that his insistence in Remark 2 is 

correct but that in Remark 3 is not. More exactly, we verify that 

the proof in Theorem 5 is applicable to FIMICASIL, but not to 

CnIMICAL. Instead, it can be applied to the CnIMICAL with 

(FP), FCnIMICAL. Note that the system CnIMICAL is a 

strengthening of the system IMICASIL in the sense that the 

former system is obtained from IMICAL adding additional axioms, 

in particular square decreasing axiom. Our results show that, while 

the systems IMICASIL and CnIMICAL are not standard complete, 

such systems with (FP), i.e., the systems FIMICASIL and 

FCnIMICAL are standard complete. This means that, w.r.t. 

standard completeness, the system FCnIMICAL has the same 

property (FP) as the system FIMICASIL. This is very natural in 

the sense that the standard negation 1 - x has the fixed-point 1/2, 

i.e., 1/2 = ～(1/2).1)

The paper is organized as follows. In Section 2, we present the 

axiomatizations of the systems IMICASIL, FIMICASIL, 

CnIMICAL, and FCnIMICAL. In Section 3, we define their 

corresponding algebraic structures, by subvarieties of the variety of 

commutative residuated lattices, and show that they are complete 

with respect to (w.r.t.) linearly ordered corresponding algebras. In 

Section 4, we establish standard completeness for FIMICASIL and 

FCnIMICAL using the method introduced in Yang (2015) together 

1) For the basic reason of this kind of research, see the paper Yang (2015). 
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with the remark that this method is not applicable to IMICASIL

and CnIMICAL (see Remark 5.5 below).

For convenience, we shall adopt notations and terminology 

similar to those in Cintula (2006), Esteva et al. (2002), Hájek

(1998), Metcalfe & Montagna (2007), Yang (2009; 2013, 2014, 

2015), and assume familiarity with them (together with the results 

found therein).

2. Syntax

We base some axiomatic extensions of the involutive micanorm 

logic IMICAL on a countable propositional language with 

formulas Fm built inductively as usual from a set of propositional 

variables VAR, binary connectives →, &, ∧, ∨, and constants T, 

F, f, t, with defined connectives:

df1. ～φ := φ → f, and

df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We may define t as f → f. We moreover define φn
t as φt & 

… & φt, n factors, where φt := φ ∧ t. For the rest of this 

paper, we use the customary notations and terminology, and the 

axiom systems to provide a consequence relation.

We start with the following axiomatization of IMICAL, the 

most basic fuzzy logic introduced here.

Definition 2.1 (Yang (2015)) IMICAL consists of the following 
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axiom schemes and rules:

A1. φ → φ (self-implication, SI)

A2. (φ ∧ ψ) → φ, (φ ∧ ψ) → ψ (∧-elimination, ∧-E)

A3. ((φ→ψ)∧(φ→χ)) → (φ→(ψ∧χ)) (∧-introduction, ∧-I)

A4. φ → (φ ∨ ψ), ψ → (φ ∨ ψ) (∨-introduction, ∨-I)

A5. ((φ→χ)∧(ψ→χ)) → ((φ∨ψ)→χ) (∨-elimination, ∨-E)

A6. F → φ (ex falso quadlibet, EF)

A7. (φ & ψ) → (ψ & φ) (&-commutativity, &-C)

A8. (t → φ) ↔ φ (push and pop, PP)

A9. φ → (ψ → (ψ & φ)) (&-adjunction, &-Adj)

A10. (φt & ψt) → (φ ∧ ψ) (&∧) 

A11. (ψ & (φ & (φ → (ψ → χ)))) → χ (residuation, Res') 

A12. ((φ → (φ & (φ → ψ))) & (ψ → χ)) → (φ → χ) (T') 

A13. ((δ & ε) → (δ & (ε & (φ → ψ)t))) ∨ (δ' → (ε' →

((ε' & δ') & (ψ → φ)t))) (PL) 

A14. ~~φ → φ (double negation elimination, DNE) 

φ → ψ, φ ⊢ ψ (modus ponens, mp)

φ ⊢ φt  (adju) 

φ ⊢ (δ & ε) → (δ & (ε & φ)) (α) 

φ ⊢ δ → (ε → ((ε & δ) & φ)) (β) 

Definition 2.2 A logic is an axiomatic extension (extension for 

short) of an arbitrary logic L if and only if (iff) it results from L

by adding axiom schemes. In particular, the following are 

weakening-free, non-associative fuzzy logics that extend IMICAL:

● (Yang (2015)) Involutive square increasing micanorm logic
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IMICASIL is IMICAL plus (S-INC) φ → (φ & φ).

● (Yang (2015)) Fixed-pointed involutive square increasing

micanorm logic FIMICASIL is IMICASIL plus (FP) t ↔ f.

● (Yang (2015)) N-potent involutive micanorm logic

CnIMICAL is IMICAL plus (N-P) φn → φn-1, 2≤n.

● Fixed-pointed n-potent involutive micanorm logic

FCnIMICAL is CnIMICAL plus (FP).

For easy reference, we let Ls be the set of the weakening-free, 

non-associative fuzzy logics defined in Definition 2.

Definition 2.3 Ls = {IMICASIL, FIMICASIL, CnIMICAL, 

FCnIMICA L}

A theory over L (∈ Ls) is a set T of formulas. A proof in a 

sequence of formulas whose each member is either an axiom of 

L or a member of T or follows from some preceding members of 

the sequence using a rule of L. T ⊢ φ, more exactly T ⊢L φ, 

means that φ is provable in T w.r.t. L, i.e., there is an L-proof 

of φ in T. A theory T is inconsistent if T ⊢ F; otherwise it is 

consistent. 

The deduction theorem for L is as follows:

Proposition 2.4 (Cintula et al. (2013; 2015)) Let T be a theory, 

and φ, ψ formulas. T ∪ {φ} ⊢L ψ iff T ⊢L γ(φ) → ψ for 

some γ ∈ Π(bDT*).2)

2) For γ and Π(bDT*), see Cintula et al. (2013; 2015) and Yang (2015).
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For convenience, “～,” “∧,” “∨,” and “→” are used 

ambiguously as propositional connectives and as algebraic 

operators, but context should clarify their meanings.

3. Semantics

Suitable algebraic structures for L (∈ Ls) are obtained as a 

subvariety of the variety of commutative monoidal residuated 

lattices.

Definition 3.1 (Yang (2015)) (i) A pointed bounded 

commutative residuated lattice is a structure A = (A, ⊤, ⊥, t, f, 

∧, ∨, *, →) such that:

(Ⅰ) (A, ⊤, ⊥, ∧, ∨) is a bounded lattice with top element 

⊤ and bottom element ⊥.

(Ⅱ) (A, *, t) is a commutative monoid.

(Ⅲ) y ≤ x→z iff x * y ≤ z, for all x, y, z ∈ A 

(residuation).

(ii) An IMICAL-algebra is a pointed bounded commutative 

residuated lattice satisfying

● t ≤ ((z*w)→(z*(w*(x→y)t))) ∨ (z'→(w'→((w'*z')*(y→x)t))), 

for all x, y, z, w, z', w' ∈ A (PLA).

● t ≤ ～～x → x, for all x ∈ A (DNEA).

L-algebras the class of which characterizes L are defined as 

follows.
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Definition 3.2 (L-algebras) An IMICASIL-algebra is an 

IMICAL-algebra satisfying: (S-INCA) t ≤ x → (x * x), for all x 

∈ A; a FIMICASIL-algebra is an IMICASIL-algebra satisfying 

(FP
A
) t ≤ t ↔ f; a CnIMICAL-algebra is an IMICAL-algebra 

satisfying: (N-PA) t ≤ xn → xn-1, 2≤n, for all x ∈ A; a 

FCnIMICAL-algebra is a CnIMICAL-algebra satisfying (FPA). We 

call all these algebras L-algebras.

An L-algebra is said to be linearly ordered if the ordering of 

its algebra is linear, i.e., x ≤ y or y ≤ x (equivalently, x ∧ y 

= x or x ∧ y = y) for each pair x, y.

Definition 3.3 (Evaluation) Let A be an algebra. An 

A-evaluation is a function v : FOR → A satisfying: v(φ → ψ) = 

v(φ) → v(ψ), v(φ ∧ ψ) = v(φ) ∧ v(ψ), v(φ ∨ ψ) = v(φ) ∨

v(ψ), v(φ & ψ) = v(φ) * v(ψ), v(F) = ⊥, v(f) = f, (and hence 

v(～φ) = ～v(φ), v(T) = ⊤, and v(t) = t).

Definition 3.4 (Cintula (2006)) Let A be an L-algebra, T a 

theory, φ a formula, and K a class of L-algebras.

(i) (Tautology) φ is a t-tautology in A, briefly an A-tautology

(or A-valid), if v(φ) ≥ t for each A-evaluation v.

(ii) (Model) An A-evaluation v is an A-model of T if v(φ) ≥ t 

for each φ ∈ T. We denote the class of A-models of T, by 

Mod(T, A).

(iii) (Semantic consequence) φ is a semantic consequence of T 

w.r.t. K, denoting by T ⊨K φ, if Mod(T, A) = Mod(T ∪ {φ}, 
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A) for each A ∈ K.

Definition 3.5 (L-algebra, Cintula (2006)) Let A, T, and φ be 

as in Definition 3.4. A is an L-algebra iff, whenever φ is 

L-provable in T (i.e. T ⊢L φ, L an L logic), it is a semantic 

consequence of T w.r.t. the set {A} (i.e. T⊨ φ), A a 

corresponding L-algebra). By MOD (l)(L), we denote the class of 

(linearly ordered) L-algebras. Finally, we write T ⊨
(l)

L φ in place 

of T ⊨M OD
(l)

(L) φ.

Theorem 3.6 (Strong completeness) Let T be a theory, and φ a 

formula. T ⊢L φ iff T ⊨L φ iff T ⊨
l
L φ.

Proof: We obtain this theorem as a corollary of Theorem 3.1.8 

in Cintula & Noguera (2011). □

4. Standard completeness

In this section, we provide standard completeness results for L 

∈ {FIMICASIL, FCnIMICAL} using the Jenei-Montagna-style 

construction in Eeteva et al. (2002) and Jenei & Montagna 

(2002).

We first show that finite or countable, linearly ordered 

L-algebras are embeddable into a standard algebra. (For 

convenience, we add the ‘less than or equal to’ relation symbol 

“≤” to such algebras.) First, note the following results. 
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Theorem 5.1 (Yang (2015)) 

(i) For every finite or countable linearly ordered MICAL-algebra 

A = (A, ≤A, ⊤, ⊥, t, f, ∧, ∨, *, →), there is a countable 

ordered set X, a binary operation ○, and a map h from A into 

X such that the following conditions hold:

(Ⅰ) X is densely ordered, and has a maximum Max, a minimum 

Min, and special elements ℯ, ∂.

(Ⅱ) (X, ○, �, ℯ) is a linearly ordered, monotonic, 

commutative groupoid with unit.

(Ⅲ) ○ is conjunctive and left-continuous w.r.t. the order topology 

on (X, �).

(Ⅳ) h is an embedding of the structure (A, ≤A, ⊤, ⊥, t, f, ∧, 

∨, *) into (X, �, Max, Min, ℯ, ∂, min, max, ○), and for all 

m, n ∈ A, h(m → n) is the residuum of h(m) and h(n) in (X, 

�, Max, Min, ℯ, ∂, max, min, ○).

(ii) For every finite or countable linearly ordered 

IMICAL-algebra A = (A, ≤A, ⊤, ⊥, t, f, ∧, ∨, *, →), there 

is a countable ordered set X, a binary operation ○, and a map h 

from A into X such that the conditions (I) to (IV) in (i) and the 

following condition hold:

(Ⅴ) For all x ∈ X, x is involutive, i.e., it satisfies (DNEA).

Proposition 5.2 (i) For every finite or countable linearly ordered 

FIMICASIL-algebra A = (A, ≤A, ⊤, ⊥, t, f, ∧, ∨, *, →), 

there is a countable ordered set X, a binary operation ○, and a 

map h from A into X such that the conditions (I) to (V) of (ii) 

in Theorem 5.1 and the following condition hold:
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(A) (X, ○, �, ℯ) is square increasing and fixed-pointed.

(ii) For every finite or countable linearly ordered 

FCnIMICAL-algebra A = (A, ≤A, ⊤, ⊥, t, f, ∧, ∨, *, →), 

there is a countable ordered set X, a binary operation ○, and a 

map h from A into X such that the conditions (I) to (V) of (ii) 

in Theorem 5.1 and the following condition hold:

(B) (X, ○, �, ℯ) is n-potent and fixed-pointed.

Proof: For convenience, we assume A as a subset of Q ∩ [0, 

1] with finite or countable elements, where 0 and 1 are least and 

greatest elements, respectively, and some ℯ and any ∂ are 

special elements, each of which corresponds to ⊤, ⊥, t, f, 

respectively.

We first note that, for MICAL, a linearly ordered, monotonic 

groupoid with unit (X, ○, �, ℯ) is defined as follows: 

X = {(m, x): m ∈ A ∖ {0 (= ⊥)} and x ∈ Q ∩ (0, m]} 

∪ {(0, 0)};

for (m, x), (n, y) ∈ X,

(m, x) � (n, y) iff either m <A n, or m =A n and x ≤ y;

(m,x) ○ (n,y) = max{(m,x), (n,y)} if m*n =A m∨n, m ≠A n, and

                             (m, x) � ℯ or (n, y) � ℯ;

              min{(m,x), (n,y)} if m * n = m ∧ z, and

                             (m, x) � ℯ or (n, y) � ℯ;
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              (m * n, m * n)  otherwise.

For convenience, we henceforth drop the index A in ≤A and 

=A, if we need not distinguish them. Context should clarify the 

intention.

We next note that, for IMICAL, m+ denotes the successor of m 

if it exists, otherwise m
+

= m, for each m ∈ A; since the 

negation in A, defined as ~m := m → ∂ is involutive, we have 

that: m = (~n)+ iff n = (~m)+; moreover, if m < m+, then 

(~(m+))+ = ~m. Here, we use Y below in place of the X above. 

Let (Y, �) be the linearly ordered set, defined by

Y = {(m, m): m ∈ A} ∪

{(m, x): ∃m'∈A such that m = m'+ > m', and x ∈ Q ∩ (0, m)},

and � being the corresponding lexicographic ordering as above. 

It is clear that (Y, �) is a subset of the ordered set (X, �) 

defined as above with the same bounds and special elements ℯ

(= (t, t)) and ∂ (= (f, f)). Notice that Y is closed under ○ and 

that � is a linear order with maximum (1, 1), minimum (0, 0), 

and special elements ℯ and ∂. Furthermore, � is dense. This 

proves (I).

For condition (II), we need to define a new operation ⊙ on Y, 

based on ○, as follows:

(m,x)⊙(n,y) = min{∂,(m,x)○(n,y)} if m = (~n)+ and p/q+p’/q’≤1,

                              where x = mp/q and y=np’/q’,  
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                              or m < (~n)+;

             (m,x) ○ (n,y)   otherwise.

The operation ⊙ satisfies conditions (II) to (V) (see Theorem 5 

in Yang (2015)). 

Thus, for (i), we need to prove (A), i.e., (X, ⊙, �, ℯ) is 

square increasing and fixed-pointed. We first prove the square 

increasingness of ⊙, i.e., (m, x) � (m, x) ⊙ (m, x). Let m ≤

t. Since t = f, m < (~m)+ and thus (m, x) ⊙ (m, x) = min{∂, 

(m, x) ○ (m, x)}; therefore, (m, x) � (m, x) ⊙ (m, x) since 

min{∂, (m, x) ○ (m, x)} = (m, x) ○ (m, x) and m = m * m. 

Let m > t. Since t = f, m > (~m)+ and thus (m, x) ⊙ (m, x) = 

(m, x) ○ (m, x); therefore, (m, x) � (m, x) ⊙ (m, x) since 

(m, x) � (m, x) ○ (m, x). We next prove fixed-point, i.e., ℯ

= ∂. It directly follows from the fact that t = f and so (t, t) = 

(f, f).

For (ii), we need to prove (B), i.e., (X, ⊙, �, ℯ) is n-potent 

and fixed-pointed. We first prove the n-potency of ⊙, i.e., (m, 

x)n � (m, x)n-1. First, consider the case m2 = m. Let m ≤ t. 

Since t = f, m < (~m)+ and thus (m, x) ⊙ (m, x) = min{∂, 

(m, x) ○ (m, x)} = (m, x) ○ (m, x). Then, we have (m, x) = 

(m, x) ⊙ (m, x) since (m, x) ○ (m, x) = (m, x); therefore, (m, 

x)n = (m, x)n-1. Let m > t. Since t = f, m > (~m)+ and thus (m, 

x) ⊙ (m, x) = (m, x) ○ (m, x). Hence, we have (m, x) ⊙ (m, 

x) = (m, m) and ((m, x) ⊙ (m, x)) ⊙ (m, x) = (m, m) ⊙ (m, 

x) = (m, m) = (m, x) ⊙ (m, x); therefore, (m, x)n = (m, x)n-1. 

Let m2 ≠ m. Its proof is almost the same as Theorem 3.3 (e) in 
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Wang (2012) since (m, x) ⊙ (m, x) = (m, x) ○ (m, x). The 

proof of fixed-point is the same as in (i). □

Proposition 5.3 Every countable linearly ordered L-algebra can 

be embedded into a standard algebra.

Proof: In an analogy to the proof of Theorem 3.2 in Jenei & 

Montagna (2002), we prove this. Let X, A , etc. be as in 

Proposition 5.2. Since (X, �) is a countable, dense, 

linearly-ordered set with maximum and minimum, it is order 

isomorphic to (Q ∩ [0, 1], ≤). Let g be such an isomorphism. 

If (I) to (V) and (A) ((B) resp) hold, letting for α, β ∈ [0, 1], 

α ⊙´ β = g(g-1(α) ⊙ g-1(β)), and, for all m ∈ A, h´(m) = 

g(h(m)), we obtain that Q ∩ [0, 1], ≤, 1, 0, ℯ, ∂, ⊙´, h´

satisfy the conditions (I) to (V) and (A) ((B) resp) of Proposition 

5.2 whenever X, �, Max, Min, ℯ, ∂, ⊙, and h do. Thus, 

without loss of generality, we can assume that X = Q ∩ [0, 1] 

and � = ≤.

Now we define for α, β ∈ [0, 1],

α ⊙＂ β = supx∈X:x≤αsupy∈X:y≤β x ⊙ y.

Commutativity of ⊙＂ follows from that of ⊙. Its monotonicity, 

identity, fixed-point, and square increasingness (n-potency resp) are 

easy consequences of the definition. Furthermore, it follows from 

the definition that ⊙＂ is conjunctive, i.e., 0 ⊙＂ 1 = 0.

We prove left-continuity. Suppose that <αn: n ∈ N>, <βn: n 
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∈ N> are increasing sequences of reals in [0, 1] such that sup{α

n: n ∈ N} = α and sup{βn: n ∈ N} = β. By the monotonicity 

of ⊙＂, sup{αn ⊙＂ βn} = α ⊙＂ β. Since the restriction of 

⊙＂ to Q ∩ [0, 1] is left-continuous, we obtain 

α ⊙＂ β = sup{q ⊙＂ r: q, r ∈ Q ∩ [0, 1], q ≤ α, r ≤ β}

         = sup{q ⊙＂ r: q, r ∈ Q ∩ [0, 1], q < α, r < β}.

For each q < α, r < β, there is n such that q < αn and r < βn. 

Thus,

sup{αn ⊙＂ βn: n ∈ N} ≥ sup{q ⊙＂ r: q, r ∈ Q ∩ [0, 

1], q < α, r < β} = α ⊙＂ β.

Hence, ⊙＂ is a left-continuous involutive micanorm on [0, 1].

It is an easy consequence of the definition that ⊙＂ extends 

⊙. By (I) to (V) and (A) ((B) resp), h is an embedding of (A, 

≤A, ⊤, ⊥, t, f, ∧, ∨, *) into ([0, 1], ≤, 1, 0, ℯ, ∂, min, 

max, ⊙＂). Moreover, ⊙＂ has a residuum, calling it ⇀.

We finally prove that for x, y ∈ A, h(x → y) = h(x) ⇀ h(y). 

By (IV), h(x → y) is the residuum of h(x) and h(y) in (Q ∩ [0, 

1], �, 1, 0, ℯ, ∂, min, max, ⊙). Thus

h(x) ⊙＂ h(x → y) = h(x) ⊙ h(x → y) ≤ h(y).

Suppose toward contradiction that there is α > h(x → y) such 

that α ⊙＂ h(x) ≤ h(y). Since Q ∩ [0, 1] is dense in [0, 1], 
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there is q ∈ Q ∩ [0, 1] such that h(x → y) < q ≤ α. Hence 

q ⊙＂ h(x) = q ⊙ h(x) ≤ h(y), contradicting (IV). □

Theorem 5.4 (Strong standard completeness) For L ∈

{FIMICASIL, FCnIMICAL}, the following are equivalent:

(1) T ⊢L φ.

(2) For every standard L-algebra and evaluation v, if v(ψ) ≥

ℯ for all ψ ∈ T, then v(φ) ≥ ℯ.

Proof: (1) to (2) follows from definition. We prove (2) to (1). 

Let φ be a formula such that T ⊬L φ, A a linearly ordered 

L-algebra, and v an evaluation in A such that v(ψ) ≥ t for all 

ψ ∈ T and v(φ) < t. Let h´ be the embedding of A into the 

standard L-algebra as in proof of Proposition 5.3. Then, h´ ⊙ v 

is an evaluation into the standard L-algebra such that h´ ⊙ v(ψ) 

≥ ℯ and yet h´ ⊙ v(φ) < ℯ. □

Remark 5.5 The proof of standard completeness in Theorem 5.4 

does not work for IMICASIL and CnIMICAL because the 

definition of ⊙ does not satisfy square increasingness. We recall 

the example introduced in Yang (2015). Consider the following 

case: ∂ = ~m < m = (~m)
+

= ℯ and p/q + p/q ≤ 1, where x 

= mp/q. Since m = m * m, we have (m, x) ⊙ (m, x) = min

{∂, (m, x) ○ (m, x)} = ∂ ≺ (m, x); therefore, (m, x) ⋠ (m, 

x) ⊙ (m, x).
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5. Concluding remark

We investigated (not merely algebraic completeness for 

IMICA SIL, FIMICASIL, CnIMICAL, and FCnIMICAL but also) 

standard completeness for FIMICASIL and FCnIMICA L. We 

further noted that the proof of standard completeness does not 

work for IMICASIL and CnIMICAL. This shows that the 

insistence in Remark 2 in Yang (2015) is correct but that in 

Remark 3 in Yang (2015) is not.
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누승적 미카놈 논리 IMICAL의 몇몇 공리적 확장

양 은 석

이 글에서 우리는 누승적 미카놈 논리 IMICAL의 몇몇 공리적

확장 체계의 표준 완전성을 다룬다. 이를 위하여, 먼저 누승적 미

카놈에 바탕을 둔 네 논리 체계를 소개한다. 각 체계에 상응하는

대수적 구조를 정의한 후, 이들 체계가 대수적으로 완전하다는 것

을 보인다. 다음으로, 이 논리 체계들 중 두 체계가 표준적으로 완

전하다는 것 즉 단위 실수 [0,1]에서 완전하다는 것을 제네이-몬테

그나 방식의 구성을 사용하여 보인다.

주요어: 퍼지 논리, (누승적) 미카놈, 대수적 완전성, 표준 완전성


