References
- Chan, W. S., Yang, H. and Zhang, L. (2003). Some results on ruin probabilities in a two-dimensional risk model, Insurance Mathematics Economics, 32, 345-358. https://doi.org/10.1016/S0167-6687(03)00115-X
- Cho, E. Y., Choi, S. K. and Lee, E. Y. (2013). Transient and stationary analyses of the surplus in a risk model, Communications for Statistical Applications and Methods, 20, 475-480. https://doi.org/10.5351/CSAM.2013.20.6.475
- Dickson, D. C. M. and Willmot, G. E. (2005). The density of the time to ruin in the classical Poisson risk model, ASTIN Bulletin, 35, 45-60. https://doi.org/10.2143/AST.35.1.583165
- Dufresne, F. and Gerber, H. U. (1991). Risk theory for the compound Poisson process that is perturbed by diffusion, Insurance Mathematics Economics, 10, 51-59. https://doi.org/10.1016/0167-6687(91)90023-Q
- Gerber, H. U. (1990). When does the surplus reach a given target?, Insurance Mathematics Economics, 9, 115-119. https://doi.org/10.1016/0167-6687(90)90022-6
- Gerber, H. U. and Shiu, E. S. W. (1997). The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin, Insurance Mathematics Economics, 21, 129-137. https://doi.org/10.1016/S0167-6687(97)00027-9
- Guo, J. Y., Yuen, K. C. and Zhou, M. (2007). Ruin probabilities in Cox risk models with two depen-dent classes of business, Acta Mathematica Sinica (English Series), 23, 1281-1288. https://doi.org/10.1007/s10114-005-0819-7
- Jeong, M. O. and Lee, E. Y. (2010). Optimal control of the surplus in an insurance policy, Journal of the Korean Statistical Society, 39, 431-437. https://doi.org/10.1016/j.jkss.2009.09.002
- Klugman, S. A., Panjer, H. H. andWillmot, G. E. (2004). Loss Models: From Data to Decisions, John Wiley & Sons, New Jersey.
- Li, S. and Garrido, J. (2005). Ruin probabilities for two classes of risk processes, ASTIN Bulletin, 35, 61-77. https://doi.org/10.2143/AST.35.1.583166
- Lv, T. L., Guo, J. Y. and Zhang, X. (2010). Ruin probabilities for a risk model with two classes of claims, Acta Mathematica Sinica (English Series), 26, 1749-1760. https://doi.org/10.1007/s10114-010-8091-x
- Tsai, C. C. L. (2009). On the ordering of ruin probabilities for the surplus process perturbed by diffusion, Scandinavian Actuarial Journal, 2009, 187-204.
- Tsai, C. C. L. and Lu, Y. (2010). An effective method for constructing bounds for ruin probabilities for the surplus process perturbed by diffusion, Scandinavian Actuarial Journal, 2010, 200-220. https://doi.org/10.1080/03461230903112190
- Wang, N. and Politis, K. (2002). Some characteristics of a surplus process in the presence of an upper barrier, Insurance Mathematics Economics, 30, 231-241. https://doi.org/10.1016/S0167-6687(02)00105-1
- Wang, G. andWu, R. (2000). Some distribution for classical risk process that is perturbed by diffusion, Insurance Mathematics Economics, 26, 15-24. https://doi.org/10.1016/S0167-6687(99)00035-9
- Zhang, C. and Wang, G. (2003). The joint density function of three characteristics on jump-diffusion risk process, Insurance Mathematics Economics, 32, 445-455. https://doi.org/10.1016/S0167-6687(03)00133-1