DOI QR코드

DOI QR Code

Characteristics of Nitrate Contamination of Groundwater - Case Study of Ogcheon Area -

지하수의 질산염 오염 특성 - 옥천지역 사례 연구 -

  • Park, Ho-Rim (Department of Environmental Engineering, Cheongju University) ;
  • Kim, Myeong-Kyun (Department of Civil Engineering, Cheongju University) ;
  • Hong, Sang-Pyo (Department of Environmental Engineering, Cheongju University)
  • 박호림 (청주대학교 환경공학과) ;
  • 김명균 (청주대학교 토목공학과) ;
  • 홍상표 (청주대학교 환경공학과)
  • Received : 2014.12.22
  • Accepted : 2015.02.10
  • Published : 2015.02.28

Abstract

Geochemical characteristics, water quality, $NO_3{^-}$ contamination and the origin of $NO_3{^-}$ were analyzed for the groundwater located at Ogcheon, Korea. The water qualities were weakly acidic to weakly alkalic and redox potentials indicated reduction condition. Compared to granitic rocks, metamorphic sedimentary rocks with intercalations of limestones and dolomites tended to be more effectively dissolved, resulting in higher pH and higher concentrations of dissolved ingredients. Contamination of heavy metals was not revealed. Geochemical reactions of carbonate rocks and influxes of artificial contamination ingredients seemed to simultaneously determine the geochemical characteristics and water qualities in the study area. From the results of ${\delta}^{15}N$ isotope analysis, the origin of $NO_3{^-}$ was estimated to be influenced dominantly by agricultural activities and human feces and urine.

본 연구에서는 충청북도 옥천군 일부지역에 분포된 지하수를 대상으로 지구화학적 특성, 수질 특성, $NO_3{^-}$에 의한 오염 특성과 그에 따른 $NO_3{^-}$의 기원을 추정하고자 하였다. 연구지역 지하수는 약산 내지 약알칼리성의 환원환경이며, 변성퇴적암류를 구성하는 석회암과 백운암의 높은 용해도로 인해 변성퇴적암 지하수는 pH와 주요 용존 성분의 함량이 화강암 지하수 보다 높은 분포를 나타낸다. 파이퍼 다이어그램에 도시된 연구지역 지하수의 수질 유형은 대부분 $(Ca+Mg)+HCO_3$형이나, 요인 분석 결과 $NO_3{^-}$$Cl^-$이 요인 1의 구성 성분으로 추출되어 $(Ca+Mg)+(Cl+NO_3)$형도 상당수 분포한다. 이와 같은 결과는 연구지역이 $NO_3{^-}$$Cl^-$로 인한 오염이 우려되는 지역임을 시사하는 것으로 국내외 농촌지역 지하수 오염 특성과 동일한 결과를 나타낸다. 중금속 원소로 인한 오염의 양상은 나타나지 않고 있으며, 탄산염 광물의 지구화학적 풍화작용과 인위적 오염 성분 유입 등의 복합적인 작용이 연구지역 지하수의 지구화학적 특성과 수질 특성을 결정짓는 요인이다. 질소 동위원소 분석 결과에 의한 $NO_3{^-}$ 기원은 주로 농업 활동과 분뇨등이 지배적인 것으로 나타났다.

Keywords

References

  1. 김동학, 장태우, 김원영, 황재하. 1978. 지질도폭 설명서(옥천도폭, Scale 1 : 50,000), 자원개발연구소, 2-13. (Kim DH, Chang TW, Kim WY, Hwang JH. 1978. Explanatory Text of the Geological Map of Ogcheon Sheet(Scale 1 : 50,000), Korea Research Institute of Geoscience and Mineral Resources, 2-13.)
  2. 김연태, 우남칠. 2003. 축사가 밀집된 농촌지역 천부지하수의 질산염 오염특성, 한국지하수토양환경학회지, 8(1), 56-67. (Kim YT, Woo NC. 2003. Nitrate Contamination of Shallow Groundwater in an Agricultural area having Intensive Livestock Facilities, Journal of KoSSGE, 8(1), 56-67.)
  3. 김옥준, 이대성, 이하영. 1977. 지질도폭 설명서(보은도폭, Scale 1 : 50,000), 자원개발연구소, 4-27. (Kim OJ, Lee DS, Lee HY. 1977. Explanatory Text of the Geological Map of Boeun Sheet(Scale 1 : 50,000), Korea Research Institute of Geoscience and Mineral Resources, 4-27.)
  4. 김윤종, 원종석, 이석민. 2000. GIS를 이용한 서울시 지하수 오염분석 연구, 한국GIS학회지, 8(2), 317-328. (Kim YJ, Won JS, Lee SM. 2000. Groundwater Pollution Analysis Uising GIS, The Journal of Korea, 8(2), 317-328.)
  5. 이인호, 이재영, 김통권. 1997. 대구시 지하수의 수질에 대한 지화학적 연구, 자원환경지질, 30(4), 327-340. (Lee IH, Lee JY, Kim TK. 1997. Geochemical Study on the Quality of Groundwater in Daegu City, Korea, Econ. Environ. Geol., 30(4), 327-340.)
  6. 이인호, 조병욱, 이병대, 성익환, 임용수. 2002. 광주광역시 지하수의 수리지화학적 특성 연구, 한국지하수토양환경학회지, 7(3), 115-132. (Lee IH, Cho BW, Lee BD, Sung IH, Lim YS. 2002. Hydrogeochemical Characteristics of Groundwater in Kwangju City, Journal of KoSSGE, 7(3), 115-132.)
  7. 이종운, 전효택, 전용원. 1997. 국내 화강암질암내심부지하수의 지구화학적 특성, 한국지하수환경학회지, 4(4), 199-211. (Lee JU, Chon HT, John YW. 1997. Geochemical Characteristics of Deep Granitic Groundwater in Korea, Journal of the Korean Society of Groundwater Environment, 4(4), 199-211.)
  8. 정상용, 심병완, 김규범, 강동환, 박희영. 2000a. 지구통계 기법을 이용한 영산강.섬진강 유역의 지하수 수질특성 연구, 한국지하수환경학회지, 7(3), 125-132. (Chung SY, Shim BO, Kim GB, Kang DH, Park HY. 2000a. The Characteristics of Groundwater Quality in the Youngsan and Sumjin River Basins Using Geostatistical Methods, Journal of the Korean Society of Groundwater Environment, 7(3), 125-132.)
  9. 정상용, 강동환, 박희영, 심병완. 2000b. 부산지역 지하수 오염현황 분석을 위한 지구통계 기법의 응용, 지질공학회지, 10(3), 247-261. (Chung SY, Kang DH, Park HY, Shim BO. 2000b. Application of Geostatistical Methods for the Analysis Groundwater Contamination in Pusan, The Journal of Engineering Geology, 10(3), 247-261.)
  10. Belkhiri L, Boudoukha A, Mouni L. 2011. A multivariate Statistical Analysis of Groundwater Chemistry Data, Int. J. Environ. Res., 5(2), 537-544.
  11. Boulding JR. 1995. Practical handbook of soil, vadose zone and groundwater contamination assesment, prevention and remediation, CRC Press, Florida, 59-116.
  12. Choi WJ, Han GH, Ro HM, Yoo SH, Lee SM. 2002. Evaluation of nitrate contamination sources of unconfined groundwater in the North Han River basin of Korea using nitrogen isotope ratios, Geosciences Journal, 6(1), 47-55. https://doi.org/10.1007/BF02911335
  13. Choi WJ, Lee SM, Ro HM. 2003. Evaluation of contamination sources of groundwater NO3- using nitrogen isotope data : A review, Geosciences Journal, 7(1), 81-87. https://doi.org/10.1007/BF02910268
  14. Fennesy MS, Cronk JK. 1997. The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate, Crit. Rev. Environ. Sci. Technol., 27, 285-317. https://doi.org/10.1080/10643389709388502
  15. Fritz P, Fontes JC, Frape SK, Louvat D, Michelot JL, Balderer W. 1989. The isotope geochemistry of carbon in groundwater at Stripa, Geochem. Cosmochim. Acta, 53, 1765-1775. https://doi.org/10.1016/0016-7037(89)90297-4
  16. Garrels RM, Christ CL. 1965. Natural limits of Eh and pH, In : Solutions, minerals and equalibria, Harper & Row, 379-383.
  17. Heaton THE. 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere, A review Chem. Geol., 59, 87-102. https://doi.org/10.1016/0168-9622(86)90059-X
  18. Kendall C, McDonnell JJ. 1998. Isotope tracers in catchment hydrology, Elsevier, 839.
  19. Min JH, Yun ST, Kim KJ, Kim HS, Han JS, Lee KS. 2002. Nitrate contamination of alluvial groundwaters in the Nakdong River basin, Korea, Geosciences Journal, 6(1), 35-46. https://doi.org/10.1007/BF02911334
  20. Sadashivaiah C, Ramakrishnaiah CR, Ranganna G. 2008. Hydrochemical Analysis and of Groundwater Quality in Tumkur Taluk, Karnataka State, India, Int. J. Environ. Res. Public Health 2008, 5(3), 158-164. https://doi.org/10.3390/ijerph5030158
  21. Williamson AK, Munn MD, Ryker SJ, Wagner RJ, Ebbert JC, Vandepool AM. 1998. Water quality in the central Colombia plateau, Washington and Idaho, 1992-95, U. S. Geological Survey Circular, 1144.
  22. Yoo SH, Choi WJ, Han GH. 1999. An investigation of the sources of nitrate contamination in the Kyonggi provine groundwater by isotope ratios analysis of nitrogen, Jounal of Korea Society of Soil Science and Fertilizer, 32, 47-56.

Cited by

  1. Evaluation for Impacts of Nitrogen Source to Groundwater Quality in Livestock Farming Area vol.50, pp.5, 2015, https://doi.org/10.7745/kjssf.2017.50.5.345
  2. 분포형 유역모델을 이용한 농촌지역 소유역의 질산성 질소 지하침출량 평가 vol.33, pp.6, 2017, https://doi.org/10.15681/kswe.2017.33.6.661
  3. 가축분뇨실태조사를 위한 지하수 오염현황조사 지점 선정 방법 개발 vol.28, pp.1, 2019, https://doi.org/10.5322/jesi.2019.28.1.37
  4. 천연광물의 양극성 표면개질을 이용한 상수원수 중 중금속제거 특성 vol.45, pp.6, 2015, https://doi.org/10.5668/jehs.2019.45.6.561