DOI QR코드

DOI QR Code

Growth and Population Dynamics of Zostera marina Due to Changes in Sediment Composition in the Seomjin Estuary, Korea

퇴적물 성상 변화에 따른 섬진강 하구 거머리말의 생장 특성

  • kim, Jeong Bae (Marine Environment Research Division, National Fisheries Research and Development Institute) ;
  • Park, Jung-Im (Marine Eco-Technology Institute) ;
  • Lee, Won-Chan (Marine Environment Research Division, National Fisheries Research and Development Institute) ;
  • Lee, Kun-Seop (Department of Biological Sciences, Pusan National University)
  • Received : 2014.09.11
  • Accepted : 2015.02.09
  • Published : 2015.02.28

Abstract

The growth and population dynamics of eelgrass (Zostera marina) due to changes in sediment composition were examined in the lower intertidal zone of the Seomjin Estuary, Korea. We surveyed environmental factors such as water temperature, underwater irradiance, main types and organic content of sediment, tidal exposure, and nutrient concentrations in the water column and sediment pore water, in relation to the shoot density, biomass, morphological characteristics, and growth of Z. marina inhabiting lower intertidal zones. The survey was conducted monthly from May to December of 2004 and 2009. The water temperature showed obvious seasonal trends in both study years. Underwater irradiance was significantly higher in 2009 than in 2004. Tidal exposure was not significantly different between 2004 and 2009. The sediment was muddy-sand in 2004 but became sandy and with a significantly lower organic content in 2009. Water column $NH_4{^+}$ concentrations were significantly higher in 2004 than in 2009. Sediment pore water $NO_3{^-}+NO_2{^-}$ concentrations were significantly higher in 2009 than in 2004. Other nutrient concentrations did not differ significantly between 2004 and 2009. Morphological characteristics, including eelgrass length and leaf width were significantly lower in 2009 than in 2004. Eelgrass shoot height, leaf length, and sheath length showed typical seasonal patterns, increasing in early summer and decreasing in autumn, in both years. Vegetative shoot density was not significantly different between 2004 and 2009, while the biomass of individual plant parts and the total biomass were significantly lower in 2009. Eelgrass leaf productivity did not differ between years, but leaf turnover time was significantly shorter in 2009 than in 2004. Eelgrass downsizing and decreased turnover time in 2009 compared to 2004 indicate more effective adaptations to the stress of long-term changes in sediment composition. Overall, results suggest that changes in sediment composition can be a limiting factor for seagrass growth in the intertidal zone.

퇴적물 성상 변화에 따른 섬진강 하구 거머리말의 생장특성을 알아보기 위해 섬진강 하구 조간대 하부에서 수온, 수중 광량, 퇴적물 입도, 유기물, 노출시간 및 영양염 농도의 환경요인과 함께 거머리말의 밀도, 생물량, 형태적 특성과 성장을 2004년과 2009년의 5월부터 12월까지 월별 조사하였다. 수온은 2004년 및 2009년 모두 계절적인 경향을 보였고, 2009년이 유의하게 낮았다. 수중 광량은 2004년 및 2009년 모두 5월 이후 감소하다가 9월 이후 증가 하였고, 2009년이 유의하게 높았다. 노출은 두 해 사이에 유의한 차이는 없었다. 표층 퇴적물의 입도 조성은 2004년 니사질에서 퇴적물 성상 변화에 의하여 2009년에는 사질로 변형되어 퇴적물 성상이 상대적으로 조립하였고, 퇴적물의 유기물 농도도 낮았다. 해수의 $NH_4{^+}$ 농도는 2004년이 유의하게 높았고, 퇴적물 공극수의 $NO_3{^-}+NO_2{^-}$ 농도는 2009년이 유의하게 높았으나 그 외 영양염 농도는 년도 별 유의한 차이가 발생하지 않았다. 거머리말의 개체 키, 잎 폭 등 형태적인 특성은 2004년 보다 2009년에 유의하게 낮았다. 두 해 모두 거머리말의 키, 잎 길이 및 엽초 길이는 초여름에 증가하고, 가을에 감소하는 계절적인 경향을 보였다. 단위면적당 서식밀도는 연도 별 유의한 차이가 없었으나, 생물량은 2004년 보다 2009년에 유의하게 적었다. 평균 개체당 잎 생산량은 연도 별 유의한 차이는 없었으나, leaf turnover time은 2009년이 2004년 보다 유의하게 짧았다. 즉, 퇴적물의 성상 변화가 2009년의 거머리말은 개체의 크기와 turnover time을 감소시킨 것으로 판단된다. 따라서 거머리말 서식지의 물리적인 퇴적물의 성상 변화는 섬진강 하구 조간대에 서식하는 잘피의 생장을 제한하는 요소가 될 수 있을 것이다.

Keywords

References

  1. Addy, C.E., 1947. Eelgrass planting guide. Maryland Conserv., 24: 16-17.
  2. Boer, 2007. Seagrass-sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Mar. Biol., 591: 5-24.
  3. Boese, B.L., K.E. Alayan, E.F. Gooch, and B.D. Robbins, 2003. Desiccation index: a measure of damage caused by adverse aerial exposure on intertidal eelgrass (Zostera marina) in an Oregon (USA) estuary. Aquat. Bot., 76: 329-337. https://doi.org/10.1016/S0304-3770(03)00068-8
  4. Bos, A.R, T.J. Bouma, G.L.J. de Kort, and M.M. van Katwijk, 2007. Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification. Estuar. Coast. Shelf Sci., 74: 344-348. https://doi.org/10.1016/j.ecss.2007.04.006
  5. Bruun, P., 1962. Sea level rise as a cause of shore erosion. Journal Waterways and Harbors Division, American Society Civil Engineers, 88: 117-130.
  6. Davis, R.C. and F.T. Short, 1997. Restoring eelgrass, Zostera marina L., habitat using a new transplanting technique: The horizontal rhizome method. Aquat. Bot., 59: 1-15. https://doi.org/10.1016/S0304-3770(97)00034-X
  7. Day, J.W., C.A.S. Hall, W.M. Kemp, and Y. Alejandro, 1989. Estuarine ecology. John Wiley and Sons Inc., New York, Chichester, Brisbane, Toronto, Singapore, 558 pp.
  8. den Hartog, C. 1970. The seagrass of the world. North-holland Publishing Company, Amsterdam, Netherlands, 275 pp.
  9. Dennison, W.C., 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat. Bot., 27: 15-26. https://doi.org/10.1016/0304-3770(87)90083-0
  10. Dennison, W.C. and R.S. Alberte, 1987. Role of daily light period in the depth distribution of Zostera marina (eelgrass). Mar. Ecol. Prog. Ser., 25: 51-61.
  11. Dennison, W.C., R.J. Orth, K.A. Moore, J.C. Stevenson, V. Carter, S. Kollar, P.W. Bergstrom, and R.A. Batiuk, 1993. Assessing water quality with submersed aquatic vegetation. BioScience, 43: 86-94. https://doi.org/10.2307/1311969
  12. Duarte, C.M., 2002. The future of seagrass meadows. Environ. Conserv., 29: 192-206.
  13. Folk, R.L. and W.C. Ward, 1957. Brazos river bar: A study in the significance of grain size parameters. J. Sediment. Petrol., 27: 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  14. Fonseca, M.S., 2007. What has changed with seagrass restoration in 58 years? In: 19th Estuarine Research Federation Abstracts. Providence, Rhode Island, 64 pp.
  15. Fonseca, M.S., W.J. Kenworthy, and F.X. Courtney, 1996. Development of planted seagrass beds in Tampa Bay, FL, USA: I. Plant components. Mar. Ecol. Prog. Ser., 132: 127-139. https://doi.org/10.3354/meps132127
  16. Fonseca, M.S. and J.S. Fisher, 1986. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar. Ecol. Prog. Ser., 29: 5-22.
  17. Gacia, E. and C.M. Duarte, 2001. Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension. Estuar. Coast. Shelf Sci., 52: 505-514. https://doi.org/10.1006/ecss.2000.0753
  18. Greve, T.M. and T. Binzer, 2004. Which factors regulate seagrass growth and distribution? In: Borum, J., C.M. Duarte, D. Krause- Jensen and T.M. Greve (eds), European seagrasses: an introduction to monitoring and management. pp. 19-23. The Monitoring and Managing of European Seagrasses (M&MS) project.
  19. Kentula, M.E. and C.D. McIntire, 1986. The autecology and production dynamics of eelgrass in Netarts Bay, Oregon. Estuaries, 9: 188-199. https://doi.org/10.2307/1352130
  20. Kim, J.B., J.-I. Park, W.-J. Choi, C.-S. Jung, P.-Y. Lee, and K.-S. Lee, 2009. Distributional range extension of the seagrass Halophila nipponica into coastal waters off the Korean peninsula. Aquat. Bot., 90: 269-272. https://doi.org/10.1016/j.aquabot.2008.10.007
  21. Kim, J.B., J.-I. Park, W.-J. Choi, J.S. Lee, and K.-S. Lee, 2010. Spatial distribution and ecological characteristics of Zostera marina and Zostera japonica in the Seomjin Estuary. Kor. J. Fish. Aquat. Sci., 43: 351-361.
  22. Kim, J.B., W.-C. Lee, K.-S. Lee, and J.-I. Park, 2013. Growth dynamics of eelgrass, Zostera marina, in the intertidal zone of Seomjin Estuary, Korea. Ocean Sci. J., 48: 239-250. https://doi.org/10.1007/s12601-013-0021-2
  23. Kim, T.H., S.R. Park, Y.K. Kim, J.H. Kim, S.H. Kim, J.H. Kim, I.K. Chung, and K.S. Lee, 2008. Growth dynamics and carbon incorporation of the seagrass, Zostera marina L. in Jindong Bay and Gamak Bay on the southern coast of Korea. Algae, 23: 241-250. https://doi.org/10.4490/ALGAE.2008.23.3.241
  24. Kim, Y.K., J.H. Kim, S.H. Kim, J.W. Kim, S.R. Park, and K-S. Lee, 2012. Growth dynamics of the seagrass, Zostera marina in Jindong Bay on the southern coast of Korea. Algae 27: 215-224. https://doi.org/10.4490/algae.2012.27.3.215
  25. Koch, E.W., 2001. Beyond light: Physical, geological and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries, 24: 1-17. https://doi.org/10.2307/1352808
  26. Lee, K.-S. and K.H. Dunton, 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser., 196: 39-48. https://doi.org/10.3354/meps196039
  27. Lee, K.-S. and S.Y. Lee, 2003. The seagrasses of the republic of Korea. In: World Atlas of Seagrasses: present status and future conservation, edited by Green EP, Short FT and Spalding MD. University of California Press, Berkeley, USA., 193-198.
  28. Lee, K.-S., J.-I. Park, I.K. Chung, D.W. Kang, and S.H. Huh, 2004. Production ecology of the seagrass Zostera marina in Jindong Bay, Korea. Algae, 19: 39-47. https://doi.org/10.4490/ALGAE.2004.19.1.039
  29. Lee, K.-S., S.R. Park, and J.B. Kim, 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar. Biol., 147: 1091-1108. https://doi.org/10.1007/s00227-005-0011-8
  30. Lee, K.-S., S.R. Park, and Y.K. Kim, 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol., 350: 144-175. https://doi.org/10.1016/j.jembe.2007.06.016
  31. Lee Long, W. and R.M. Thom, 2001. Improving seagrass habitat quality. In: Global Seagrass Research Methods, edited by Short, F.T., R.G. Coles and C.A. Short, Elsevier, Amsterdam, pp. 407-424.
  32. Mackenzie, F.T., 1998. Our changing planet: An introduction to earth system science and global environmental change. 2nd edition. Upper Saddle River, NJ, USA: Prentice Hall.
  33. Manzanera, M., M. Perez, and J. Romero, 1998. Seagrass mortality due to oversedimentation: an experimental approach. J. Coast. Conserv., 4: 67-70. https://doi.org/10.1007/BF02806491
  34. Marba, N.M. and C.M. Duarte, 1994. Growth responses of the seagrass Cymodocea nodosa to experimental burial and erosion. Mar. Ecol. Prog. Ser., 107: 307-311. https://doi.org/10.3354/meps107307
  35. Marsh, J.A. Jr., W.C. Dennison and R.S. Alberte, 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina). J. Exp. Mar. Biol. Ecol., 101: 257-267. https://doi.org/10.1016/0022-0981(86)90267-4
  36. Mills, KE. and M.S. Fonseca, 2003. Mortality and productivity of eelgrass Zostera marina under conditions of experimental burial with two sediment types. Mar. Ecol. Prog. Ser., 255: 127-134. https://doi.org/10.3354/meps255127
  37. MLTM(Ministry of Land, Transport and Maritime Affairs), 2010. Establishment of action plans for management of estuary system (III), Seomjin Estuary, Korea, 419 pp.
  38. MOMAF(Ministry of Maritime Affairs and Fisheries), 2007. Study on environmental management of environment protect area in Deukryang Bay. 171 pp.
  39. National Academy of Sciences, 1975. Underexploited tropical plants with promising economic value. National Academy of Sciences. Washington, DC. USA, 188 pp.
  40. Noh, J.W., J.-Y. Lee, and J.-K. Shin, 2011. Analysis of saltwater intrusion by flushing discharge in the Seomjin River Estuary. J. Env. Imp. Ass., 20: 325−335.
  41. Park, J.-I. and K.-S. Lee, 2007. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar. Pollut. Bull., 54: 1238-1248. https://doi.org/10.1016/j.marpolbul.2007.03.020
  42. Park, J.-I., K.-S. Lee, and M.H. Son, 2011. Growth dynamics of Zostera marina transplants in the Nakdong estuary related environmental changes. Kor. J. Fish. Aquat. Sci., 44: 533−542.
  43. Park, J.-I., J.Y. Park, K.-S. Lee, and M.H. Son, 2012. Adaptation success of Zostera caespitosa transplants. Korean J. Environ. Biol., 30: 47−53.
  44. Parsons, T.R., Y. Maita, and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergammon Press, New York, 173 pp.
  45. Short, F.T., 1983. The seagrass, Zostera marina L. plant morphology and bed structure in relation to sediment ammonium in Izembek Lagoon, Alaska. Aquat. Bot., 16: 149-161. https://doi.org/10.1016/0304-3770(83)90090-6
  46. Short, F.T., 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat. Bot., 27: 41-57. https://doi.org/10.1016/0304-3770(87)90085-4
  47. Short, F.T., W.C. Dennison, and D.G. Capone, 1990. Phosphate limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Mar. Ecol. Prog. Ser., 62: 149-174. https://doi.org/10.3354/meps062149
  48. Short, F.T. and C.P. McRoy, 1984. Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Bot. Mar., 27: 547-555.
  49. Ward, L.G., W.M. Kemp, and W.R. Boynton, 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar. Geol., 59: 85-103. https://doi.org/10.1016/0025-3227(84)90089-6
  50. Waycotta, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams, 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci., USA, 106: 12377-12381. https://doi.org/10.1073/pnas.0905620106
  51. Wetzel, R.L. and P.A. Penhale, 1983. Production ecology of seagrass communities in the lower Chesapeake Bay. Mar. Technol. Soc. J., 17: 22-31.
  52. Zieman, J.C., 1974. Methods for the study of the growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture, 4: 139-143. https://doi.org/10.1016/0044-8486(74)90029-5

Cited by

  1. 통영 연안에 분포하는 거머리말의 계절변동과 생식특성 vol.11, pp.2, 2015, https://doi.org/10.15433/ksmb.2019.11.2.062