References
- Giri, S. K., Das, N. N. and Pradhan, G. C., "Magnetite Powder and Kaolinite Derived from Waste Iron ore Tailings for Environmental Applications, Powder Technol., 214(3), 513-518(2011). https://doi.org/10.1016/j.powtec.2011.09.017
- Sakthivel, R., Vasumathi, N., Sahu, D. and Mishra, B. K., "Synthesis of Magnetite Powder from Iron Ore Tailings," Powder Technol., 201(2), 187-190(2010). https://doi.org/10.1016/j.powtec.2010.03.005
- Giri, S. K., Das, N. N. and Pradhan, G. C., "Synthesis and Characterization of Magnetite Nanoparticles Using Waste Iron Ore Tailings for Adsorptive Removal of Dyes from Aqueous Solution," Colloids Surf., A, 389(1-3), 43-49(2011). https://doi.org/10.1016/j.colsurfa.2011.08.052
-
Wu, S., Sun, A., Zhai, F., Wang, J., Xu, W., Zhang, Q. and Volinsky, A. A., "
$Fe_3O_4$ Magnetic Nanoparticles Synthesis from Tailings by Ultrasonic Chemical Co-precipitation," Mater. Lett., 65(12), 1882-1884(2011). https://doi.org/10.1016/j.matlet.2011.03.065 - Mishra, R. K., Rout, P. C., Sarangi, K. and Nathsarma, K. C., "Solvent Extraction of Fe(III) from the Chloride Leach Liquor of Low Grade Iron ore Tailings Using Aliquat 336," Hydrometallurgy, 108(1-2), 93-99(2011). https://doi.org/10.1016/j.hydromet.2011.03.003
- Mishra, R. K., Rout, P. C., Sarangi, K. and Nathsarma, K. C., "A Comparative Study on Extraction of Fe(III) from Chloride Leach Liquor Using TBP, Cyanex 921 and Cyanex 923," Hydrometallurgy, 104(2), 298-303(2010). https://doi.org/10.1016/j.hydromet.2010.07.003
- Rittmann, B. E., Mayer, B., Westerhoff, P. and Edwards, M., "Capturing the Lost Phosphorus," Chemosphere, 84(6), 846-853(2011). https://doi.org/10.1016/j.chemosphere.2011.02.001
-
Ding, M., De Jong, B., Roosendaal, S. and Vredenberg, A., "XPS Studies on the Electronic Structure of Bonding Between Solid and Solutes: Adsorption of Arsenate, Chromate, Phosphate,
$Pb^{2+}$ , and$Zn^{2+}$ Ions on Amorphous Black Ferric Oxyhydroxide," Geochim. Cosmochim. Acta, 64(7), 1209-1219(2000). https://doi.org/10.1016/S0016-7037(99)00386-5 - Luengo, C., Brigante, M., Antelo, J. and Avena, M., "Kinetics of Phosphate Adsorption on Goethite: Comparing Batch Adsorption and ATR-IR Measurements," J. Colloid Interface Sci., 300(2), 511-518(2006). https://doi.org/10.1016/j.jcis.2006.04.015
-
Kim, J., Li, W., Philips, B. L. and Grey, C. P., "Phosphate Adsorption on the Iron Oxyhydroxides Goethite (
${\alpha}$ -FeOOH), Akaganeite (${\beta}$ -FeOOH), and Lepidocrocite (${\gamma}$ -FeOOH): A$^{31}P$ NMR Study, Energy Environ. Sci., 4(10), 4298-4305(2011). https://doi.org/10.1039/c1ee02093e - Zach-Maor, A., Semiat, R. and Shemer, H., "Adsorption-desorption Mechanism of Phosphate by Immobilized Nano-sized Magnetite Layer: Interface and Bulk Interactions," J. Colloid Interface Sci., 363(2), 608-614(2011). https://doi.org/10.1016/j.jcis.2011.07.062
- Hu, J., Lo, I. M. C. and Chen, G., "Removal of Cr(VI) by Magnetite Nanoparticle," Water Sci. Technol., 50, 139-146(2004).
- Shipley, H. J., Yean, S., Kan, A. T. and Tomson, M. B., "Adsorption of Arsenic to Magnetite Nanoparticles: Effect of Particle Concentration, pH, Ionic Strength, and Temperature," Environ. Toxicol. Chem., 28(3), 509-515(2009). https://doi.org/10.1897/08-155.1
- Amin, M. M., Khodabakhshi, A., Mozafari, M., Bina, B. and Kheiri, S., "Removal of Cr(VI) from Simulated Electroplating Wastewater by Magnetite Nanoparticles," Environ. Eng. Manage. J., 9(7), 921-927(2010).
- Chowdhury, S. R. and Yanful, E. K., "Arsenic and Chromium Removal by Mixed Magnetite-maghemite Nanoparticles and the Effect of Phosphate on Removal," J. Environ. Manage., 91(11), 2238-2247(2010). https://doi.org/10.1016/j.jenvman.2010.06.003
- Do, T. M. and Suh, Y. J., "Removal of Aqueous Cr(VI) Using Magnetite Nanoparticles Synthesized from a Low Grade Iron Ore," Par. Aerosol Res., 9(4), 221-230(2013). https://doi.org/10.11629/jpaar.2013.9.4.221
- Kislik, V. S., Solvent Extraction: Classical and Novel Approaches, Elsevier, Amsterdam(2012).
- Nishihama, S., Hirai, T. and Komasawa, I., "Review of Advanced Liquid-liquid Extraction Systems for the Separation of Metal Ions by a Combination of Conversion of the Metal Species with Chemical Reaction," Ind. Eng. Chem. Res., 40(14), 3085-3091(2001). https://doi.org/10.1021/ie010022+
- Flett, D. S., "Solvent Extraction in Hydrometallurgy: The Role of Organophosphorus Extractants," J. Organomet. Chem., 690(10), 2426-2438(2005). https://doi.org/10.1016/j.jorganchem.2004.11.037
- Massart, R., "Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media," IEEE Trans. Magn., 17(2), 1247-1248(1981). https://doi.org/10.1109/TMAG.1981.1061188
- Lu, A. H., Salabas, E. L. and Schuth, F., "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application," Angewandte Chemie - International Edition, 46(8), 1222-1244(2007). https://doi.org/10.1002/anie.200602866
- Iwasaki, T., Mizutani, N., Watano, S., Yanagida, T. and Kawai, T., "Size Control of Magnetite Nanoparticles by Organic Solventfree Chemical Coprecipitation at Room Temperature," J. Exp. Nanosci., 5(3), 251-262(2010). https://doi.org/10.1080/17458080903490731
- Iler, R. K., The Chemistry of Silica, Wiley-Interscience, New York (1979).
- Lee, J.-K., Jeong, S.-G., Koo, S.-J., Kim, S.-Y. and Ju, C.-S., "Solvent Extraction of Lithium Ion in Aqueous Solution Using TTA and TOPO," Korean Chem. Eng. Res., 51(1), 53-57(2013). https://doi.org/10.9713/kcer.2013.51.1.53
- Harvianto, G. R., Jeong, S.-G. and Ju, C.-S., "The Effect of Dominant Ions on Solvent Extraction of Lithium Ion from Aqueous Solution," Korean J. Chem. Eng., 31(5), 828-833(2014). https://doi.org/10.1007/s11814-014-0005-7
- Le Corre, K. S., Valsami-Jones, E., Hobbs, P. and Parsons, S. A., "Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review," Crit. Rev. Environ. Sci. Technol., 39(6), 433-477(2009). https://doi.org/10.1080/10643380701640573
- Parsons, S. A. and Smith, J. A., "Phosphorus Removal and Recovery from Municipal Wastewaters," Elements, 4(2), 109-112(2008). https://doi.org/10.2113/GSELEMENTS.4.2.109
- Shin, H. S. and Lee, S. M., "Removal of Nutrients in Wastewater by Using Magnesium Salts," Environ. Technol., 19(3), 283-290 (1997). https://doi.org/10.1080/09593331908616682
- Lee, S. I., Weon, S. Y., Lee, C. W. and Koopman, B., "Removal of Nitrogen and Phosphate from Wastewater by Addition of Bittern," Chemosphere, 51(4), 265-271(2003). https://doi.org/10.1016/S0045-6535(02)00807-X
- Lahav, O., Telzhensky, M., Zewuhn, A., Gendel, Y., Gerth, J., Calmano, W. and Birnhack, L., "Struvite Recovery from Municipal-Wastewater Sludge Centrifuge Supernatant Using Seawater NF Concentrate as a Cheap Mg(II) Source," Sep. Purif. Technol., 108, 103-110(2013). https://doi.org/10.1016/j.seppur.2013.02.002
-
Telzhensky, M., Birnhack, L., Lehmann, O., Windler, E. and Lahav, O., "Selective Separation of Seawater
$Mg^{2+}$ Ions for Use in Downstream Water Treatment Processes," Chem. Eng. J., 175, 136-143 (2011). https://doi.org/10.1016/j.cej.2011.09.082 - Quintana, M., Sanchez, E., Colmenarejo, M. F., Barrera, J., Garcia, G. and Borja, R., "Kinetics of Phosphorus Removal and Struvite Formation by the Utilization of by-product of Magnesium Oxide Production," Chem. Eng. J., 111(1), 45-52(2005). https://doi.org/10.1016/j.cej.2005.05.005
Cited by
- Immobilization of the Thenoyltrifluoroacetone on Sodium Dodecyl Sulfate Modified Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb (II) from Water Samples vol.54, pp.5, 2015, https://doi.org/10.9713/kcer.2016.54.5.636
- Production of magnetite nanoparticles from Ethiopian iron ore using solvent extraction and studying parameters that affect crystallite size vol.7, pp.10, 2015, https://doi.org/10.1088/2053-1591/abc2df