DOI QR코드

DOI QR Code

Production of High-purity Magnetite Nanoparticles from a Low-grade Iron Ore via Solvent Extraction

  • Suh, Yong Jae (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Do, Thi May (Nanomaterials Science and Engineering, Korea University of Science and Technology) ;
  • Kil, Dae Sup (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Hee Dong (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Kuk (Department of Environmental Engineering, Pusan National University)
  • Received : 2014.06.12
  • Accepted : 2014.07.17
  • Published : 2015.02.01

Abstract

We produced magnetite nanoparticles (MNPs) and a Mg-rich solution as a nano-adsorbent and a coagulant for water treatment, respectively, using a low-grade iron ore. The ore was leached with aqueous hydrochloric acid and its impurities were removed by solvent extraction of the leachate using tri-n-butyl phosphate as an extractant. The content of Si and Mg, which inhibit the formation of MNPs, was reduced from 10.3 wt% and 15.5 wt% to 28.1 mg/L and < 1.4 mg/L, respectively. Consequently, the Fe content increased from 68.6 wt% to 99.8 wt%. The high-purity $Fe^{3+}$ solution recovered was used to prepare 5-15-nm MNPs by coprecipitation. The wastewater produced contained a large amount of $Mg^{2+}$ and can be used to precipitate struvite in sewage treatment. This process helps reduce the cost of both sewage and iron-orewastewater treatments, as well as in the economic production of the nano-adsorbent.

Keywords

References

  1. Giri, S. K., Das, N. N. and Pradhan, G. C., "Magnetite Powder and Kaolinite Derived from Waste Iron ore Tailings for Environmental Applications, Powder Technol., 214(3), 513-518(2011). https://doi.org/10.1016/j.powtec.2011.09.017
  2. Sakthivel, R., Vasumathi, N., Sahu, D. and Mishra, B. K., "Synthesis of Magnetite Powder from Iron Ore Tailings," Powder Technol., 201(2), 187-190(2010). https://doi.org/10.1016/j.powtec.2010.03.005
  3. Giri, S. K., Das, N. N. and Pradhan, G. C., "Synthesis and Characterization of Magnetite Nanoparticles Using Waste Iron Ore Tailings for Adsorptive Removal of Dyes from Aqueous Solution," Colloids Surf., A, 389(1-3), 43-49(2011). https://doi.org/10.1016/j.colsurfa.2011.08.052
  4. Wu, S., Sun, A., Zhai, F., Wang, J., Xu, W., Zhang, Q. and Volinsky, A. A., "$Fe_3O_4$ Magnetic Nanoparticles Synthesis from Tailings by Ultrasonic Chemical Co-precipitation," Mater. Lett., 65(12), 1882-1884(2011). https://doi.org/10.1016/j.matlet.2011.03.065
  5. Mishra, R. K., Rout, P. C., Sarangi, K. and Nathsarma, K. C., "Solvent Extraction of Fe(III) from the Chloride Leach Liquor of Low Grade Iron ore Tailings Using Aliquat 336," Hydrometallurgy, 108(1-2), 93-99(2011). https://doi.org/10.1016/j.hydromet.2011.03.003
  6. Mishra, R. K., Rout, P. C., Sarangi, K. and Nathsarma, K. C., "A Comparative Study on Extraction of Fe(III) from Chloride Leach Liquor Using TBP, Cyanex 921 and Cyanex 923," Hydrometallurgy, 104(2), 298-303(2010). https://doi.org/10.1016/j.hydromet.2010.07.003
  7. Rittmann, B. E., Mayer, B., Westerhoff, P. and Edwards, M., "Capturing the Lost Phosphorus," Chemosphere, 84(6), 846-853(2011). https://doi.org/10.1016/j.chemosphere.2011.02.001
  8. Ding, M., De Jong, B., Roosendaal, S. and Vredenberg, A., "XPS Studies on the Electronic Structure of Bonding Between Solid and Solutes: Adsorption of Arsenate, Chromate, Phosphate, $Pb^{2+}$, and $Zn^{2+}$ Ions on Amorphous Black Ferric Oxyhydroxide," Geochim. Cosmochim. Acta, 64(7), 1209-1219(2000). https://doi.org/10.1016/S0016-7037(99)00386-5
  9. Luengo, C., Brigante, M., Antelo, J. and Avena, M., "Kinetics of Phosphate Adsorption on Goethite: Comparing Batch Adsorption and ATR-IR Measurements," J. Colloid Interface Sci., 300(2), 511-518(2006). https://doi.org/10.1016/j.jcis.2006.04.015
  10. Kim, J., Li, W., Philips, B. L. and Grey, C. P., "Phosphate Adsorption on the Iron Oxyhydroxides Goethite (${\alpha}$-FeOOH), Akaganeite (${\beta}$-FeOOH), and Lepidocrocite (${\gamma}$-FeOOH): A $^{31}P$ NMR Study, Energy Environ. Sci., 4(10), 4298-4305(2011). https://doi.org/10.1039/c1ee02093e
  11. Zach-Maor, A., Semiat, R. and Shemer, H., "Adsorption-desorption Mechanism of Phosphate by Immobilized Nano-sized Magnetite Layer: Interface and Bulk Interactions," J. Colloid Interface Sci., 363(2), 608-614(2011). https://doi.org/10.1016/j.jcis.2011.07.062
  12. Hu, J., Lo, I. M. C. and Chen, G., "Removal of Cr(VI) by Magnetite Nanoparticle," Water Sci. Technol., 50, 139-146(2004).
  13. Shipley, H. J., Yean, S., Kan, A. T. and Tomson, M. B., "Adsorption of Arsenic to Magnetite Nanoparticles: Effect of Particle Concentration, pH, Ionic Strength, and Temperature," Environ. Toxicol. Chem., 28(3), 509-515(2009). https://doi.org/10.1897/08-155.1
  14. Amin, M. M., Khodabakhshi, A., Mozafari, M., Bina, B. and Kheiri, S., "Removal of Cr(VI) from Simulated Electroplating Wastewater by Magnetite Nanoparticles," Environ. Eng. Manage. J., 9(7), 921-927(2010).
  15. Chowdhury, S. R. and Yanful, E. K., "Arsenic and Chromium Removal by Mixed Magnetite-maghemite Nanoparticles and the Effect of Phosphate on Removal," J. Environ. Manage., 91(11), 2238-2247(2010). https://doi.org/10.1016/j.jenvman.2010.06.003
  16. Do, T. M. and Suh, Y. J., "Removal of Aqueous Cr(VI) Using Magnetite Nanoparticles Synthesized from a Low Grade Iron Ore," Par. Aerosol Res., 9(4), 221-230(2013). https://doi.org/10.11629/jpaar.2013.9.4.221
  17. Kislik, V. S., Solvent Extraction: Classical and Novel Approaches, Elsevier, Amsterdam(2012).
  18. Nishihama, S., Hirai, T. and Komasawa, I., "Review of Advanced Liquid-liquid Extraction Systems for the Separation of Metal Ions by a Combination of Conversion of the Metal Species with Chemical Reaction," Ind. Eng. Chem. Res., 40(14), 3085-3091(2001). https://doi.org/10.1021/ie010022+
  19. Flett, D. S., "Solvent Extraction in Hydrometallurgy: The Role of Organophosphorus Extractants," J. Organomet. Chem., 690(10), 2426-2438(2005). https://doi.org/10.1016/j.jorganchem.2004.11.037
  20. Massart, R., "Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media," IEEE Trans. Magn., 17(2), 1247-1248(1981). https://doi.org/10.1109/TMAG.1981.1061188
  21. Lu, A. H., Salabas, E. L. and Schuth, F., "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application," Angewandte Chemie - International Edition, 46(8), 1222-1244(2007). https://doi.org/10.1002/anie.200602866
  22. Iwasaki, T., Mizutani, N., Watano, S., Yanagida, T. and Kawai, T., "Size Control of Magnetite Nanoparticles by Organic Solventfree Chemical Coprecipitation at Room Temperature," J. Exp. Nanosci., 5(3), 251-262(2010). https://doi.org/10.1080/17458080903490731
  23. Iler, R. K., The Chemistry of Silica, Wiley-Interscience, New York (1979).
  24. Lee, J.-K., Jeong, S.-G., Koo, S.-J., Kim, S.-Y. and Ju, C.-S., "Solvent Extraction of Lithium Ion in Aqueous Solution Using TTA and TOPO," Korean Chem. Eng. Res., 51(1), 53-57(2013). https://doi.org/10.9713/kcer.2013.51.1.53
  25. Harvianto, G. R., Jeong, S.-G. and Ju, C.-S., "The Effect of Dominant Ions on Solvent Extraction of Lithium Ion from Aqueous Solution," Korean J. Chem. Eng., 31(5), 828-833(2014). https://doi.org/10.1007/s11814-014-0005-7
  26. Le Corre, K. S., Valsami-Jones, E., Hobbs, P. and Parsons, S. A., "Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review," Crit. Rev. Environ. Sci. Technol., 39(6), 433-477(2009). https://doi.org/10.1080/10643380701640573
  27. Parsons, S. A. and Smith, J. A., "Phosphorus Removal and Recovery from Municipal Wastewaters," Elements, 4(2), 109-112(2008). https://doi.org/10.2113/GSELEMENTS.4.2.109
  28. Shin, H. S. and Lee, S. M., "Removal of Nutrients in Wastewater by Using Magnesium Salts," Environ. Technol., 19(3), 283-290 (1997). https://doi.org/10.1080/09593331908616682
  29. Lee, S. I., Weon, S. Y., Lee, C. W. and Koopman, B., "Removal of Nitrogen and Phosphate from Wastewater by Addition of Bittern," Chemosphere, 51(4), 265-271(2003). https://doi.org/10.1016/S0045-6535(02)00807-X
  30. Lahav, O., Telzhensky, M., Zewuhn, A., Gendel, Y., Gerth, J., Calmano, W. and Birnhack, L., "Struvite Recovery from Municipal-Wastewater Sludge Centrifuge Supernatant Using Seawater NF Concentrate as a Cheap Mg(II) Source," Sep. Purif. Technol., 108, 103-110(2013). https://doi.org/10.1016/j.seppur.2013.02.002
  31. Telzhensky, M., Birnhack, L., Lehmann, O., Windler, E. and Lahav, O., "Selective Separation of Seawater $Mg^{2+}$ Ions for Use in Downstream Water Treatment Processes," Chem. Eng. J., 175, 136-143 (2011). https://doi.org/10.1016/j.cej.2011.09.082
  32. Quintana, M., Sanchez, E., Colmenarejo, M. F., Barrera, J., Garcia, G. and Borja, R., "Kinetics of Phosphorus Removal and Struvite Formation by the Utilization of by-product of Magnesium Oxide Production," Chem. Eng. J., 111(1), 45-52(2005). https://doi.org/10.1016/j.cej.2005.05.005

Cited by

  1. Immobilization of the Thenoyltrifluoroacetone on Sodium Dodecyl Sulfate Modified Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb (II) from Water Samples vol.54, pp.5, 2015, https://doi.org/10.9713/kcer.2016.54.5.636
  2. Production of magnetite nanoparticles from Ethiopian iron ore using solvent extraction and studying parameters that affect crystallite size vol.7, pp.10, 2015, https://doi.org/10.1088/2053-1591/abc2df