Reducing Mobile Storage Writes: Non-Volatile Write Buffer and PRAM-based Journaling

  • Published : 2015.02.16

Abstract

Keywords

References

  1. K. Park et aI., "A 45nm 4Gb 3-Dimensional double-stacked multi-Level NAND Flash memory with shared bitline structure," Proc. ISSCC, pp. 9-10, 2008.
  2. H. Chung et aI., "A 58nm 1.8V 1Gb PRAM with 6.4MB/s program BW," Proc. ISSCC, pp. 500-502, 2011.
  3. Y. Choi et aI., "A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth," Proc. ISSCC, pp.19-23, 2012.
  4. J. Kim et aI., "A 45nm 1Mb embedded STT-MRAM with design techniques to minimize read-disturbance," Proc. VLSIC, pp. 296-297, 2011.
  5. T. Liu et aI., "A 130.7mm2 2-layer 32Gb ReRAM memory device in 24nm technology," Proc. ISSCC, pp. 17-21, 2013.
  6. S. Park, et al., "CFLRU: A replacement algorithm for Flash memory," Proc. CASES, pp. 234-241, 2006.
  7. H. Jo et aI., "FAB: Flash-aware buffer management policy for portable media players," IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 485-493, 2006. https://doi.org/10.1109/TCE.2006.1649669
  8. W. Kang et aI., "Durable write cache in Flash memory SSD for Relational and NoSQL databases," Proc. SIGMOD, pp. 529-540, 2014.
  9. SQLite, http://www.sqlite.org.
  10. K. Lee et aI., "Smart layers and dumb result: IO characterization of an android-based smartphone," Proc. EMSOFT, pp. 23-32, 2012.
  11. H. Kim et aI., "Revisiting storage for smartphones," Proc. USENIX ATC, pp. 1-14, 2012.
  12. S. Jeong et al., "I/O stack optimization for smartphones," Proc. USENIX ATC, pp. 309-320, 2013.
  13. W. Kang et aI., "X-FTL: Transactional FTL for SQLite databases," Proc. SIGMOD, pp. 97-108, 2013 .
  14. W. Kim et aI., "Resolving journaling of journal anomaly in android I/O: multi-version B-tree with lazy split," Proc. FAST, pp. 273 - 285, 2014.
  15. J. Kim et aI., "A PRAM and NAND Flash hybrid architecture for high-performance embedded storage subsystems," Proc. EMSOFT, pp. 31 -40, 2008.
  16. G. Sun et aI., "A hybrid solid-state storage architecture for the performance, energy consumption, and lifetime improvement," Proc. HPCA, pp. 1-12, 2010.
  17. J. Kim et aI., "Reducing excessive journaling overhead with small-sized NVRAM for mobile devices," IEEE Trans. Consumer Electronics, vol. 60, no. 2, pp. 217-224, 2014. https://doi.org/10.1109/TCE.2014.6851997
  18. R. Liu et aI., "NVM Duet: Unified working nemory and persistent store architecture," Proc. ASPLOS, pp. 455-470, 2014.
  19. J. Zhao et aI., "Kiln: Closing the performance gap between systems with and without persistence support," Proc. MICRO, pp. 421-432, 2013.
  20. Atomic commit, http://www.sqlite.org/atomiccommit.html.
  21. Sandisk iNAND eMMC 4.41 specification, JESDS4-A441, Datasheet.
  22. Micron Flash memory chip MLC specification, MT29 F16G08MAAWP, Datasheet.
  23. M. Son et al., "A small non-volatile write buffer to reduce storage writes in smartphones," Proc. DATE, 2015.
  24. OpenSSD Project. http://goo.gl/J0Ts5, 2011.
  25. JEDEC Standard, low power double data rate 2(LPDDR2), JESD209-2E, Apr. 2011.
  26. T. Lee et al., "FPGA-based prototyping systems for emerging memory technologies," Proc. RSP, pp. 115-120, 2014.
  27. J. Lee et aI., "Differential logging: A commutative and associative logging scheme for high parallel main memory database," Proc. ICDE, pp. 173-182, 2001.
  28. J. Zhao et aI., "FIRM: Fair and high-performance memory control for persistent memory systems," Proc. MICRO, 2014.