DOI QR코드

DOI QR Code

Mechanical and wear properties of HPT-biomedical titanium: A review

  • Received : 2015.06.25
  • Accepted : 2015.11.23
  • Published : 2015.09.25

Abstract

Titanium (Ti) based alloys are widely used in biomedical implants due to their low density, excellent corrosion resistance and good biocompatibilities. In recent years, growing interest in sever plastic deformation (SPD) has stimulated research and development on the techniques to attain refining of the grain size to the submicrometer or even nanometer level. The mechanical and wear properties determining the application of Ti in medicine may be improved via SPD. High pressure torsion (HPT) technique is one of the approaches available for improving the mechanical and wear properties of biomedical Ti materials. Accordingly, this article is designed to examine most recent state of the art scientific works related to the developments in mechanical properties and wear resistance of biomedical Ti materials processed by HPT. A comprehensive review in this area is systematically presented.

Keywords

References

  1. Bo, L., Yifu, S., Weiye, H. and Lei, L. (2014), "Surface modification of Ti-6Al-4V alloy via friction-stir processing: microstructure evolution and dry sliding wear performance", Surf. Coat. Technol., 239, 160-170. https://doi.org/10.1016/j.surfcoat.2013.11.035
  2. Capitanu, L., Onisoru, J., Iarovici, A. and Tiganesteanu, C. (2008), "Scratching mechanisms of hip artificial joints", Tribol. Industry, 30(1-2), 23-32.
  3. Cho, T., Lee, H., Ahn, B., Kawasaki, M. and Langdon, T.G. (2014), "Microstructural evolution and mechanical properties in a Zn-Al eutectoid alloy processed by high-pressure torsion", Acta Materialia, 72, 67-79. https://doi.org/10.1016/j.actamat.2014.03.026
  4. Cojocaru, V., Raducanu, D., Gordin, D.M. and Cinca, I. (2013), "Texture evolution during ARB (Accumulative Roll Bonding) processing of Ti-10Zr-5Nb-5Ta alloy", J. Alloy. Compounds, 546(5), 260-269. https://doi.org/10.1016/j.jallcom.2012.08.103
  5. Dai, Z.D., Pan, S.C., Wang, M., Yang, S.R., Zhang, X.S. and Xue, Q.J. (1997), "Improving the fretting wear resistance of titanium alloy by laser beam quenching", Wear, 213(1-2), 135-139. https://doi.org/10.1016/S0043-1648(97)00160-9
  6. Diomidis, N., Mischler, S., More, N.S. and Roy, M. (2012), "Tribo- electrochemical characterization of metallic biomaterials for total joint replacement", Acta Biomaterialia, 8(2), 852-859. https://doi.org/10.1016/j.actbio.2011.09.034
  7. Edalati, K., Matsubara, E. and Horita, Z. (2009), "Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain", Metallurgic. Mater. Trans. A, 40(9), 2079-2086. https://doi.org/10.1007/s11661-009-9890-5
  8. Eliasa, C.N, Meyers, M.A, Valiev, R.Z. and Monteiro, S.N. (2013), "Ultrafine grained titanium for biomedical applications: An overview of performance", J. Mater. Res. Technol., 2(4), 340-350. https://doi.org/10.1016/j.jmrt.2013.07.003
  9. Faghihi, S., Li, D. and Szpunar, J.A. (2010), "Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressure torsion", Nanotechnol., 21(48), 485703. https://doi.org/10.1088/0957-4484/21/48/485703
  10. Figueiredo, R.B. and Langdom, T.G. (2012), "Fabricating ultrafine-grained materials through the application of severe plastic deformation: A review of developments in Brazil", J. Mater. Res. Technol., 1(1), 55-62. https://doi.org/10.1016/S2238-7854(12)70010-8
  11. Fu, Jie, Ding Hua, Huang, Yi, Zhang, Wenjing and Langdon T.G. (2015), "Influence of phase volume fraction on the grain refining of a Ti-6Al-4V alloy by high-pressure torsion", J. Mater. Res. Technol., 4(1), 2-7. https://doi.org/10.1016/j.jmrt.2014.10.006
  12. Horita, Z., Furukawa, M., Nemoto, N., Barnes, A.J. and Langdon, T.G. (2000), "Superplastic forming at high strain rates after sever plastic deformation", Acta Mater., 48(14), 3633-3640. https://doi.org/10.1016/S1359-6454(00)00182-8
  13. Islamgaliev, R.K., Kazyhanov, V.U., Shestakova, L.O., Sharafutdinov, A.V. and Valiev, R.Z. (2008), "Microstructure and mechanical proper- ties of titanium (Grade 4) processed by high-pressure torsion", Mater. Sci. Eng. A., 493(1), 190-194. https://doi.org/10.1016/j.msea.2007.08.084
  14. Jain, A., Basu, B., Manoj Kumar, B.V. and Harshavardhan, Sarkar, J. (2010) "Grain size-wear rate relationship for titanium in liquid nitrogen environment", Acta Mater., 58(7), 2313-2323. https://doi.org/10.1016/j.actamat.2009.12.017
  15. Janecek, M., Strasky, J., Cizek, J., Harcuba, P., Vaclavova, K., Polyakova, V. and Semenova, P. (2013), "Mechanical properties and dislocation structure evolution in Ti6Al7Nb alloy processed by high pressure torsion", Metallurgic. Mater. Trans. A, 45(1), 7-15.
  16. Kent, D., Wang, G., Yu, Z., Ma, X. and Dargusch, M. (2011), "Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique", J. Mech. Behav. Biomed. Mater., 4(3), 405-416. https://doi.org/10.1016/j.jmbbm.2010.11.013
  17. Kim, H.Y., Sasaki, T., Okutsu, K., Kim, J.I., Inamura, T., Hosoda, H. and Miyazaki, S. (2006), "Texture and shape memory behavior of Ti-22Nb-6Ta alloy", Acta Mater., 54(2), 423-433. https://doi.org/10.1016/j.actamat.2005.09.014
  18. Lin, Z., Wang, L., Xue, X., Lu, W., Qin, J. and Zhang, D. (2013), "Microstructure evolution and mechanical properties of a Ti-35Nb- 3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP)", Mater. Sci. Eng. C, 33(8), 4551-4561. https://doi.org/10.1016/j.msec.2013.07.010
  19. Meredith, C.S. and Khan, A.S. (2012), "Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing", Int. J. Plast., 30-31, 202-217. https://doi.org/10.1016/j.ijplas.2011.10.006
  20. Mohsin, T.M., Zahid A.K. and Arshad N.S. (2013), "Influence of microstructural features on wear resistance of biomedical titanium materials", Int. J. Chem., Nuclear, Metallurgic. Mater. Eng., 7(1), 52-56.
  21. Mohsin, T.M., Zahid, A.K. and Arshad N.S. (2014), "Beta Titanium Alloys: The lowest elastic modulus for biomedical applications: A review", Int. J. Chem., Nuclear, Metallurgic. Mater. Eng., 8(8), 726-731.
  22. Niinomi, M. (1998), "Mechanical properties of biomedical titanium alloys", Mater. Sci. Eng. A, 243(1-2), 231-236. https://doi.org/10.1016/S0921-5093(97)00806-X
  23. Ozaltin, K., Chrominski, W., Kulczyk, M., Panigrahi, A., Horky, J., Zehetbauer, M. and Lewandowska, M. (2014), "Enhancement of mechanical properties of biocompatible Ti-45Nb alloy by hydrostatic extrusion", J. Mater. Sci., 49(20), 6930-6936. https://doi.org/10.1007/s10853-014-8397-7
  24. Purcek, G., Yapici, G.G., Karaman, I. and Maier, H.J. (2011), "Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium", Mater. Sci. Eng., 528(6), 2303-2308. https://doi.org/10.1016/j.msea.2010.11.021
  25. Raducanu, D., Vasilescu, E., Cojocaru, V.D., Cinca, I., Drob, P., Vasilescu, C. and Drob, S.I. (2011), "Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy", J. Mech. Behav. Biomed. Mater., 4(7), 1421-1430. https://doi.org/10.1016/j.jmbbm.2011.05.012
  26. Sabirov, I., Perez-Prado, M.T., Molina-Aldareguia, J.M., Semenova, I.P., Salimgareeva, G.K. and Valiev, R.Z. (2011), "Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route", Scripta Materialia, 64(1), 69-72. https://doi.org/10.1016/j.scriptamat.2010.09.006
  27. Sabirov, I., Valiev, R.Z., Semenova, I.P. and Pippan, R. (2010), "Effect of equal channel angular pressing on the fracture behavior of commercially pure titanium", Metallurgic. Mater. Trans. A, 41(3), 727-733. https://doi.org/10.1007/s11661-009-0111-z
  28. Sergueeva, A.V., Stolyarov, V.V., Valiev, R.Z. and Mukherjee, A.K. (2001), "Advanced mechanical properties of pure titanium with ultrafine grained structure", Scripta Materialia, 45(7), 747-752. https://doi.org/10.1016/S1359-6462(01)01089-2
  29. Shahmir H., Nili-Ahmadabadi M., Huang Y. and Langdon T.G. (2014), "Evolution of microstructure and hardness in NiTi shape memory alloys processed by high-pressure torsion", J. Mater. Sci., 49, 2998-3009. https://doi.org/10.1007/s10853-013-7985-2
  30. Sharman, K., Bazarnik, P., Brynk, T., Bulutsuz, A.G., Lewandowska, M., Huang, Y. and Langdon, T.G. (2015), "Enhancement in mechanical properties of a $\beta$-titanium alloy by high-pressure torsion", J. Mater. Res. Technol., 4(1), 79-83. https://doi.org/10.1016/j.jmrt.2014.10.010
  31. Stolyarov, V.V., Shuster, L.S., Migranov, M.S., Valiev, R.Z. and Zhu, Y.T. (2004), "Reduction of friction coefficient of ultrafine-grained CP titanium", Mater. Sci. Eng. A, 371(1), 313-317. https://doi.org/10.1016/j.msea.2003.12.026
  32. Stolyarov, V.V. (2011), "Mechanical and functional properties of titanium alloys processed by severe plastic deformation", Materials Science Forum.
  33. Svetlana, G., Irina, S., Milos, J. and Josef, S. (2014), "Effect of high pressure torsion on the aging kinetics of $\beta$-titanium Ti-15Mo alloy", 6th International Conference on Nanomaterials by Sever Plastic Deformation, Materials Science and Engineering, Metz.
  34. Topolski, K., Garbacz, H., Wiecinski, P., Pachla, W. and Kurzydlowski, K.J. (2012), "Mechanical properties of titanium processed by hydrostatic extrusion", Archiv. Metallurgy Mater., 57(3), 863-867. https://doi.org/10.2478/v10172-012-0095-3
  35. Tsuji, N., Ito, Y., Saito, Y. and Minamino, Y. (2002), "Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing", Scripta Mater., 47(12), 893-899. https://doi.org/10.1016/S1359-6462(02)00282-8
  36. Valiev, R. (2004), "Nanostructuring of metals by SPD for advanced properties", Nat. Mater., 3, 511-516. https://doi.org/10.1038/nmat1180
  37. Valiev, R.Z. and Alexandrov, I.V. (2002), "Paradox of strength and ductility in metals processed by severe plastic deformation", J. Mater. Res., 17(1), 5-8. https://doi.org/10.1557/JMR.2002.0002
  38. Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V. (2000), "Bulk nanostructured materials from severe plastic deformation", Prog. Mater. Sci., 45(2), 103-189. https://doi.org/10.1016/S0079-6425(99)00007-9
  39. Valiev, R.Z., Ivanisenko, V., Rauch, E.F. and Baudelet, B. (1996), "Structure and deformation behaviour of Armco iron subjected to severe plastic deformation", Acta Materialia, 44(12), 4705-4712. https://doi.org/10.1016/S1359-6454(96)00156-5
  40. Valiev, R.Z., Semenova, I.P., Jakushina, E., Latysh, V.V., Rack, H., Lowe, T.C., Petruzelka, J., Dluhos, L., Hrusak, D. and Sochova, J. (2008), "Nanostructured SPD processed titanium for medical implants", Mater. Sci. Forum, 584-586, 49-54.
  41. Valiev R.Z., Sergueeva A.V. and Mukheijee A.K. (2003), "The effect of annealing on tensile deformation behavior of nanostructured SPD titanium", Scripta Mater., 49(7), 669-674. https://doi.org/10.1016/S1359-6462(03)00395-6
  42. Valiev, R.Z., Zehetbauer, M.J., Estrin, Y., Hoppel, H.W., Ivanisenko, Y., Hahn, H., Wilde, G., Roven, H.J., Sauvage, X. and Langdon, T.G. (2007), "The innovation potential of bulk nanostructured materials", Adv. Eng. Mater., 9(7), 527-533. https://doi.org/10.1002/adem.200700078
  43. Valiev, R.Z., Zhilyaev, A.P. and Langdon, T.G. (2014), Bulk Nanostructured Materials: Fundamentals and Applications, Wiley & Sons, New Jersey, USA.
  44. Wadood, A., Inamura, T., Yamabe-Mitarai, Y. and Hosoda, H. (2013), "Strengtheningof b Ti-6Cr-3Sn alloy through $\beta$ grain refinement, a phase precipitation and resulting effects on shape memory properties", Mater. Sci. Eng. A, 559, 829-835. https://doi.org/10.1016/j.msea.2012.09.030
  45. Wang, C.T., Escudeiro, A., Polcar, T., Cavaleiro, A., Wood, R.J, Gao, N. and Langdon, T.G. (2013b), "Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion", Wear, 306(1), 304-310. https://doi.org/10.1016/j.wear.2012.12.033
  46. Wang, C.T., Gao, N., Gee, M.G., Wood, R.J. and Langdon, T.G. (2012), "Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion", Wear, 280-281, 28-35. https://doi.org/10.1016/j.wear.2012.01.012
  47. Wang, C.T., Gao, N., Gee, M.G., Wood, R.J. and Langdon, T.G. (2013a), "Processing of an ultrafine-grained titanium by high-pressure torsion: an evaluation of the wear properties with and without a TiN coating", J. Mech. Behav. Biomed. Mater., 17, 166-175. https://doi.org/10.1016/j.jmbbm.2012.08.018
  48. Wang, Y.C. and Langdon, T.G. (2013c), "Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion", Mater. Sci. Eng. A, 559, 861-867. https://doi.org/10.1016/j.msea.2012.09.034
  49. Xu, C., Horita, Z. and Langdon, T.G. (2008), "The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion", Acta Materialia, 56(18), 5168-5176. https://doi.org/10.1016/j.actamat.2008.06.036
  50. Xu, W., Edwards, D.P., Wu, X., Stoica, M., Calin, M., Kuhn, U. and Xia, K. (2013), "Promoting nano/ultrafine-duplex structure via accelerated $\alpha$ precipitation in a $\beta$-type titanium alloy severely deformed by high-pressure torsion", Scripta Materialia, 68(1), 67-70. https://doi.org/10.1016/j.scriptamat.2012.09.023
  51. Yang, X., Okabe, Y., Miura, H. and Sakai, T. (2012), "Effect of pass strain and temperature on recrystallisation in magnesium alloy AZ31 after interrupted cold deformation", J. Mater. Sci., 47(6), 2823-2830. https://doi.org/10.1007/s10853-011-6111-6
  52. Yildiz, F., Yetim, A.F., Alsaran, A. and Efeoglu, I. (2009), "Wear and corrosion behaviour of various surface treated medical grade titanium alloy in biosimulated environment", Wear, 267(5), 695-701. https://doi.org/10.1016/j.wear.2009.01.056
  53. Yilmazer, H., Niinomi, M., Cho, K., Nakai, M., Hieda, J., Sato, S. and Todaka, Y. (2014), "Nanostructure of $\beta$-type titanium alloys through severe plastic deformation", Adv. Mat. Lett., 5(7), 378-383. https://doi.org/10.5185/amlett.2014.amwc.1120
  54. Yilmazer, H., Niinomi, M., Nakai, M., Cho, K., Hieda, J., Todaka, Y. and Miyazaki,T. (2013), "Mechanical properties of a medical $\beta$-type titanium alloy with specific microstructural evolution through high-pressure torsion", Mater. Sci. Eng. C, 33(5), 2499-2507. https://doi.org/10.1016/j.msec.2013.01.056
  55. Yilmazer, H., Niinomi, M., Nakai, M., Hieda, J., Todaka, Y., Akahori, T. and Miyazaki, T.J. (2012), "Heterogeneous structure and mechanical hardness of biomedical $\beta$-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion", Mech. Behav. Biomed. Mater., 10, 235-245. https://doi.org/10.1016/j.jmbbm.2012.02.022
  56. Zhang, Y., Figueiredo, R.B., Alhajeri, S.N., Wang, J.T., Gao, N. and Langdon, T.G. (2011), "Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature", Mater. Sci. Eng. A, 528(25), 7708-7714. https://doi.org/10.1016/j.msea.2011.06.054
  57. Zhao, X., Fu, W., Yang, X. and Langdon, T.G., (2008), "Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature", Scripta Materialia, 59(5), 542-545. https://doi.org/10.1016/j.scriptamat.2008.05.001
  58. Zhilyaev, A.P. and Langdon, T.G. (2008), "Using high-pressure torsion for metal processing: fundamentals and applications", Prog. Mater. Sci., 53(6), 893-979. https://doi.org/10.1016/j.pmatsci.2008.03.002