DOI QR코드

DOI QR Code

팔목 부착형 생체신호 측정기기에 사용가능한 방사패턴 재구성 안테나 설계 및 인체 SAR 영향 분석

Design of Radiation Pattern Reconfigurable Antenna for Vital Signal Sensing Device Attached on Wristband and SAR Analysis on Human body

  • 이창민 (서울과학기술대학교 NID융합기술대학원) ;
  • 정창원 (서울과학기술대학교 NID융합기술대학원)
  • Lee, Chang Min (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Jung, Chang Won (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
  • 투고 : 2014.10.20
  • 심사 : 2015.01.08
  • 발행 : 2015.01.31

초록

본 논문은 생체신호를 측정하는 팔목부착용 Fitbit Flex상에 구현된 방사패턴 재구성 안테나에 관련된 논문이다. 또한 본 논문에서 제안하는 루프-다이폴 방사패턴 재구성 안테나의 인체 내 부위별 전자파 흡수율 (Specific Absorption Rate; SAR)에 관한 논문이다. 본 논문의 루프-다이폴 방사패턴 재구성 안테나는 두 개의 RF 스위치를 사용하여 서로 반대방향의 두 가지 방사패턴을 구현한다. 방사패턴 재구성 안테나는 블루투스 (Bluetooth) 통신 대역 (2.4 - 2.485 GHz)을 사용하며, 최대이득은 1.96 dBi이다. SAR 시뮬레이션 결과로 블루투스 입력 평균전력 0.04 W가 팔목을 포함하는 인체 내 다섯 개 부위 (두부, 가슴, 배, 등, 팔목)에 입력되었을 때 Federal Communication Commission (FCC)의 기준인 단위 1 g 당 1.6 W/kg을 모두 만족함을 확인하였다. 또한 최대 SAR 값은 두부에서 1.12 W/kg이다.

This paper presents radiation pattern reconfigurable antenna for Fitbit Flex wristband which detects vital signal. Also, the paper presents Specific Absorption Rate (SAR) from the loop-dipole radiation pattern reconfigurable antenna based on the position of human body. The proposed loop-dipole radiation pattern reconfigurable antenna produces two opposite side direction radiation pattern using two RF switches. The resonant frequency of the radiation pattern reconfigurable antenna is Bluetooth communication bandwidth (2.4 - 2.485 GHz) and the maximum gain of the proposed antenna is 1.96 dBi. The proposed antenna satisfied the standard SAR value of 1.6 W/kg in 1 g tissue of the human body when the Bluetooth communication input average power of 0.04 W is excited to five parts of human body (head, chest, stomach, back, wrist). The maximum SAR value of in this simulation is presented in the part of head.

키워드

참고문헌

  1. J. Lee, S. I. Kwak and S. Lim, "Wrist-wearable zeroth-order resonant antenna for wireless body area network applications," Electron. Lett., vol. 47, Issue. 7, pp. 431-433, Mar. 2011. DOI: http://dx.doi.org/10.1049/el.2011.0312
  2. H. Shin, J. P. Kim and J. H. Choi, "A stair-shaped CPW-fed printed UWB antenna for Wireless Body Area Network," Microwave. Conference. APMC 2009. Asia Pacific. , pp. 1965-1968, Dec. 2009.
  3. S. J. Ha, Y. B. Jung, D. H. Kim and C. W. Jung, "Textile patch antennas using double layer fabrics for wrist-wearable applications," Microwave Opt Technol Lett., vol. 40, no. 23, pp. 2697-2702, Dec. 2012. DOI: http://dx.doi.org/10.1002/mop.27200
  4. FITBIT. "fitbit flex product manual", https://deskcustomers.s3.amazonaws.com/fitbit/Fitbit%20Flex%20Product%20Manual%20-%20English.pdf.
  5. V. V. Andre, R. Arye, and K. Youji, "RF/Microwave Interaction with Biological Tissues," IEEE press., pp. 94-96, 2006.
  6. K. Bahng, C. W. Jung, and K. Kim, "A compact beam reconfigurable antenna for symmetric beam switching," Progress In Electromagnetics Research., vol. 129, pp. 1-16, 2012. DOI: http://dx.doi.org/10.2528/PIER12032005
  7. W. Kang and K. W. Kim, "A beam pattern-reconfigurable antenna using PIN diodes," Antenna and Propagation Society International Symposium., vol. 40, no. 23, pp. 1-4, July. 2010.
  8. J. Y. Kim, B. J. Lee and C. W. Jung, "Reconfigurable beam steering antenna using double loops," Electron. Lett., vol. 47, Issue. 7, pp. 430-431, Mar. 2011. DOI: http://dx.doi.org/10.1049/el.2011.0278
  9. K. Bahng, C. W. Jung, and K. Kim, "Design and measurement of beam reconfigurable antenna based on folded dipole structure," Electron. Lett., vol. 45, Issue. 3, pp. 138-139, Jan. 2009. DOI: http://dx.doi.org/10.1049/el:20093243
  10. S. Lim and H. Ling, "Design of electrically small, pattern reconfigurable Yagi antenna," Electron. Lett., vol. 43, no. 24, pp. 1326-1327, Nov. 2007. DOI: http://dx.doi.org/10.1049/el:20072393