DOI QR코드

DOI QR Code

Medical Image Enhancement Using an Adaptive Nonlinear Histogram Stretching

적응적 비선형 히스트그램 스트레칭을 이용한 의료영상의 화질향상

  • Kim, Seung-Jong (Department of Computer Information, Hanyang Women's University)
  • 김승종 (한양여자대학교 컴퓨터정보과)
  • Received : 2014.09.17
  • Accepted : 2015.01.08
  • Published : 2015.01.31

Abstract

In the production of medical images, noise reduction and contrast enhancement are important methods to increase qualities of processing results. By using the edge-based denoising and adaptive nonlinear histogram stretching, a novel medical image enhancement algorithm is proposed. First, a medical image is decomposed by wavelet transform, and then all high frequency sub-images are decomposed by Haar transform. At the same time, edge detection with Sobel operator is performed. Second, noises in all high frequency sub-images are reduced by edge-based soft-threshold method. Third, high frequency coefficients are further enhanced by adaptive weight values in different sub-images. Finally, an adaptive nonlinear histogram stretching method is applied to increase the contrast of resultant image. Experimental results show that the proposed algorithm can enhance a low contrast medical image while preserving edges effectively without blurring the details.

의료영상에서 잡음을 제거하는 것과 명암대비를 좋게하는 것은 화질을 향상시키는 중요한 방법이다. 본 논문에서는 의료영상의 화질 향상을 위해 에지 기반 잡음 제거 방법과 적응적 비선형 히스토그램 스트레칭 알고리즘을 제안한다. 첫째, 웨이블릿 변환을 수행하고 분해된 고주파 부밴드 각각에 대해 Haar 변환을 수행한다. 동시에 수평, 수직, 대각 방향의 Sobel 마스크를 적용하여 방향별 에지를 검출한다. 둘째, 고주파 부밴드에 대해 에지 기반 적응적 문턱치를 이용하여 잡음을 제거한다. 셋째, 적응적 가중치를 이용하여 고주파 부밴드 계수 값을 향상한 후, Haar 역변환 및 웨이블릿 역변환을 수행하여 복원영상을 얻는다. 마지막으로 복원된 영상의 화소 값의 범위가 좁아졌으므로 제안하는 비선형 히스토그램 스트레칭 알고리즘을 이용하여 명암대비가 향상된 영상을 얻는다. 제안한 알고리즘을 낮은 명암대비를 갖는 의료영상에 적용했을 경우 효율적으로 에지를 보존하면서도 시각적으로 우수한 결과를 얻었다.

Keywords

References

  1. Zohair Al-Ameen, Ghazali Sulong and Md. Gapar Md. Johar, "Employing a suitable contrast enhancement technique as a pre-restoration adjustment phase for computed tomography medical images," SERSC International Journal of Bio-Science and Bio-Technology, Vol. 5, No. 1, pp. 73-80, 2013.
  2. Muna F. Al-Samaraie, "A new enhancement approach for enhancing image of digital cameras by changing the contrast," SERSC International Journal of Advanced Science and Technology, Vol. 32, pp. 13-22, 2011.
  3. R. Grag, B. Mittal and S. Grag, "Histogram equalization techniques for image enhancement," International Journal of Electronics & Communication Technology, Vol. 2, Issue 1, pp. 107-111, 2011.
  4. Vidhyalavanya. R and Madheswaran. M, "An improved denoising algorithm using parametric multiwavelets for image enhancement," SERSC International Journal of Advanced Science and Technology, Vol. 16, pp. 1-10, 2010.
  5. Kossi Edoh and John Paul Roop, "A fast wavelet multilevel approach to total variation image denoising," SERSC International Journal of Signal Processing, Image Processing and Pattern Recognition, Vol. 2, No. 3, pp. 57-74, 2009.
  6. Jian Lu, Dennis M. Healy, Jr. and John B. Weaver, "Contrast enhancement of medical images using multi-scale edge representation," Optical Engineering, Vol. 33, pp. 2151-2161, 1994. DOI: http://dx.doi.org/10.1117/12.172254
  7. Yang, G. and Hansell, D.M., "CT image enhancement with wavelet analysis for the detection of small airways disease," IEEE Trans. Medical Imaging, Vol. 16, pp. 953-961, 1997. DOI: http://dx.doi.org/10.1109/42.650893
  8. Fang, Y. and Qi, F., "A method of wavelet image enhancement based on soft threshold," Computer Engineering and Applications, Vol. 23, pp. 16-19, 2002.
  9. Anamika Bhardwaj and Manish K. Singh, "A novel approach of medical image enhancement based on wavelet transform," International J. of Engineering Research and Applications, Vol. 2, pp. 2356-2359, 2012.
  10. J. Cheng and C. Liu, "Novel method of color image enhancement based on wavelet analysis," Intelligent Information Technology Application Workshops, pp. 435-438, 2008.
  11. Yi Wan and Dongbin Shi, "Joint exact histogram specification and image enhancement through the wavelet transform," IEEE Trans. on Image Processing, Vol. 16, No. 9, pp. 2245-2250, 2007. DOI: http://dx.doi.org/10.1109/TIP.2007.902332
  12. Yang, Y., Su, Z. and Sun, L., "Medical image enhancement algorithm based on wavelet transform," IEE Electronics Letters, Vol. 46, No. 2, pp. 120-121, 2010. DOI: http://dx.doi.org/10.1049/el.2010.2063
  13. Seung-Jong Kim, "Medical Image Enhancement Using an Adaptive Weight and Threshold Values", The Institute of Internet, Broadcasting and Communication(IIBC), Vol. 12, No. 5, pp. 205-211, 2012.
  14. A. Grossmann, and J. Morlet, "Decomposition of hardy functions into square integrable wavelets of constant shape," SIAM J. Math. Anal., Vol. 15, pp. 723-736, 1984. DOI: http://dx.doi.org/10.1137/0515056
  15. S. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, pp. 674-693, 1989. DOI: http://dx.doi.org/10.1109/34.192463
  16. David L. Donoho and Iain M. Johnstone, "Adapting to unknown smoothness via wavelet shrinkage," Journal of the American Statistical Association, Vol. 90, Issue 432, pp. 1200-1224, 1995. DOI: http://dx.doi.org/10.1080/01621459.1995.10476626
  17. Daniel J. Jobson, Zia-ur Rahman and Glenn A. Woodell, "The statistics of visual representation," Proc. SPIE 4736, Visual Information Processing XI, 25, 2002. DOI: http://dx.doi.org/doi:10.1117/12.477589