DOI QR코드

DOI QR Code

A Weighted Mean Squared Error Approach Based on the Tchebycheff Metric in Multiresponse Optimization

Tchebycheff Metric 기반 가중평균제곱오차 최소화법을 활용한 다중반응표면 최적화

  • Jeong, In-Jun (Department of Business Administration, Daegu University)
  • Received : 2014.08.20
  • Accepted : 2015.01.08
  • Published : 2015.01.31

Abstract

Multiresponse optimization (MRO) seeks to find the setting of input variables, which optimizes the multiple responses simultaneously. The approach of weighted mean squared error (WMSE) minimization for MRO imposes a different weight on the squared bias and variance, which are the two components of the mean squared error (MSE). To date, a weighted sum-based method has been proposed for WMSE minimization. On the other hand, this method has a limitation in that it cannot find the most preferred solution located in a nonconvex region in objective function space. This paper proposes a Tchebycheff metric-based method to overcome the limitations of the weighted sum-based method.

다중반응표면 최적화는 다수의 반응변수(품질특성치)를 최적화하는 입력변수의 조건을 찾는 것을 목적으로 한다. 다중반응표면 최적화를 위해 제안된 가중평균제곱오차(Weighted Mean Squared Error, WMSE) 최소화법은 평균제곱오차의 구성요소인 제곱편차와 분산에 서로 다른 가중치를 부여하는 방법이다. 지금까지 WMSE 최소화법과 관련하여, 개별 반응변수의 WMSE를 구성한 후 이들의 가중합을 최소화하는 가중합 기반 WMSE 최소화법이 제안되었다. 그러나 가중합 기반법은 목적함수 공간에서 볼록하지 않은 구간이 있고 이 구간에서 가장 선호되는 해가 존재할 경우 이 해를 찾아내지 못한다는 한계를 지니고 있다. 본 논문에서는 기존의 가중합 기반법의 한계점을 극복하기 위하여 Tchebycheff Metric 기반 WMSE 최소화법을 제안하고자 한다.

Keywords

References

  1. Khuri, A. I., "Multiresponse Surface Methodology", In Handbook of Statistics: Design and Analysis of Experiment (Vol. 13) (eds. A. Ghosh and C. R. Rao), pp. 377-406, 1996.
  2. Jeong, I. "Multiresponse Optimization: A Literature Review and Research Opportunities", Journal of the Korean Society for Quality Management, Vol. 39, No. 3, pp. 377-390, 2011.
  3. Taguchi, G. and Wu, Y., "Off-line Quality Control", Central Japan Quality Control Association (available from American Supplier Institute, Dearborn, MI), 1979.
  4. Ross, P. J., Taguchi Techniques for Quality Engineering, McGraw-Hill Book Company, San Francisco, CA, 1988.
  5. Koksoy, O., "Multiresponse Robust Design: Mean Square Error (MSE) Criterion", Applied Mathematics and Computation, Vol. 175, No. 2, pp. 1716-1729, 2006. DOI: http://dx.doi.org/10.1016/j.amc.2005.09.016
  6. Jeong, I. and Cho, H., "A Weighted Mean Squared Error Approach to Multiple Response Surface Optimization", Journal of The Korea Academia-Industrial Cooperation Society, Vol. 14, No. 2, pp. 625-633, 2013. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.2.625
  7. Koksoy, O. and Yalcinoz, T., "Mean Square Error Criteria to Multiresponse Process Optimization by a New Genetic Algorithm", Applied Mathematics and Computation, Vol. 175, No. 2, pp. 1657-1674, 2006. DOI: http://dx.doi.org/10.1016/j.amc.2005.09.011
  8. Rheem, S. and Lee, W. "Multiresponse Optimization in Response Surface Analysis: A Method by Minimization of Weighted Sum of Estimates of Expected Squared Relative Errors", Journal of the Korean Society for Quality Management, Vol. 33, No. 1, pp. 73-82, 2004.
  9. Koksoy, O., "A Nonlinear Programming Solution to Robust Multi-Response Quality Problem", Applied Mathematics and Computation, Vol. 196, No. 2, pp. 603-612, 2008. DOI: http://dx.doi.org/10.1016/j.amc.2007.06.023
  10. Shin, S., Samanlioglu, F., Cho, B. B., and Wiecek, M. M., "Computing Trade-Offs in Robust Design: Perspectives of the Mean Squared Error", Computers and Industrial Engineering, Vol. 60, No. 2, pp. 248-255, 2011. DOI: http://dx.doi.org/10.1016/j.cie.2010.11.006
  11. Lin, D. and Tu, W., "Dual Response Surface Optimization", Journal of Quality Technology, Vol. 27, No. 1, pp. 34-39, 1995.
  12. Ding, R., Lin, D. K. J., and Wei, D., "Dual Response Surface Optimization: A Weighted MSE Approach", Quality Engineering, Vol. 16, No. 3, pp. 377-385, 2004. DOI: http://dx.doi.org/10.1081/QEN-120027940
  13. Jeong, I., Kim, K., and Chang, S. Y., "Optimal Weighting of Bias and Variance in Dual Response Surface Optimization", Journal of Quality Technology, Vol. 37, No. 3, pp. 236-247, 2005.
  14. Jeong, I., Kim, K., and Lin, D., "Bayesian Analysis for Weighted Mean Squared Error in Dual Response Surface Optimization," Quality and Reliability Engineering International, Vol. 26, No. 5, pp. 417-430, 2010. DOI: http://dx.doi.org/10.1002/qre.1058
  15. Lee, D. and Kim, K., "Interactive Weighting of Bias and Variance in Dual Response Surface Optimization", Expert Systems with Applications, Vol. 39, No. 5, pp. 5900-5906, 2012. DOI: http://dx.doi.org/10.1016/j.eswa.2011.11.114
  16. Steuer, R. E., Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley & Sons, New York, NY, 1986.
  17. Romano, D., Varetto, M., and Vicario, G., "Multiresponse Robust Design: A General Framework Based on Combined Array", Journal of Quality Technology, Vol. 36, No. 1, pp. 27-37, 2004.

Cited by

  1. A Posterior Preference Articulation Method to the Weighted Mean Squared Error Minimization Approach in Multi-Response Surface Optimization vol.16, pp.10, 2015, https://doi.org/10.5762/KAIS.2015.16.10.7061