
http://dx.doi.org/10.5573/JSTS.2015.15.1.068 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015

Manuscript received May. 12, 2014; accepted Dec. 27, 2014
A part of this work was presented in Korean Conference on
Semiconductors, Seoul in Korea, Feb. 2014
Ewha Womans University
E-mail : bahn@ewha.ac.kr

LDF-CLOCK: The Least-Dirty-First CLOCK
Replacement Policy for PCM-based Swap Devices

Seunghoon Yoo, Eunji Lee, and Hyokyung Bahn

Abstract—Phase-change memory (PCM) is a
promising technology that is anticipated to be used in
the memory hierarchy of future computer systems.
However, its access time is relatively slower than
DRAM and it has limited endurance cycle. Due to this
reason, PCM is being considered as a high-speed
storage medium (like swap device) or long-latency
memory. In this paper, we adopt PCM as a virtual
memory swap device and present a new page
replacement policy that considers the characteristics
of PCM. Specifically, we aim to reduce the write
traffic to PCM by considering the dirtiness of pages
when making a replacement decision. The proposed
replacement policy tracks the dirtiness of a page at
the granularity of a sub-page and replaces the least
dirty page among pages not recently used.
Experimental results with various workloads show
that the proposed policy reduces the amount of data
written to PCM by 22.9% on average and up to
73.7% compared to CLOCK. It also extends the
lifespan of PCM by 49.0% and reduces the energy
consumption of PCM by 3.0% on average.

Index Terms—Phase-change memory, swap device,
replacement policy, virtual memory, CLOCK

I. INTRODUCTION

Recently, phase-change memory (PCM) has been
drawing considerable interest as a memory medium of

future computer systems [1-4]. In particular, PCM is
considered as a replacement of DRAM due to its various
advantages such as low-power consumption, high density,
byte-addressability, and non-volatility [1-3]. However,
PCM has weaknesses to become a main memory medium
as its access time is relatively slower (about 1-5x read, 5-
25x write) compared to DRAM and it has limited write
endurance. Hence recently, it is being considered as a
high-speed storage medium (like swap device) or long-
latency memory that is to be used with a DRAM buffer
[1, 3, 4, 11, 12]. This paper presents a new page
replacement policy for the system that uses PCM as a
swap device.

The primary goal of page replacement policies is to
reduce the number of page faults because accessing
traditional swap devices (i.e., hard disks) costs several
orders of magnitudes larger than accessing DRAM
memory. Meanwhile, PCM is known to possess
significantly different physical characteristics from hard
disks. As a result, PCM specific file systems [11, 12] and
PCM specific memory management techniques [1, 3, 4]
have been extensively studied. Unlike these studies,
research on virtual memory systems that use PCM as a
swap device is in its infancy.

As Table 1 shows, the write latency of PCM is 5-25
times slower than that of DRAM and the number of write
operations allowed for each PCM cell is also limited to
106-108 [1, 3]. To cope with this situation, studies on
PCM memory use additional DRAM as shown in Figs.
1(a) and (b). Though details of the architectures are
different, the role of additional DRAM is commonly to
hide the slow write operations of PCM and also increase
the lifespan of PCM by absorbing frequent write
operations. Studies on PCM specific file systems also

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 69

aim to reduce write traffic to PCM [11, 12].
This paper reduces the write traffic to PCM-based

swap devices by judiciously managing virtual memory
page replacement policies. Specifically, we design a
novel page replacement policy for virtual memory
systems by making use of the fine-grained dirtiness
management of a page. Our replacement policy keeps
track of the dirtiness of a page (e.g., 4KB) at the
granularity of a sub-page (e.g., 256B) and replaces the
least dirty page among pages not recently used. This
technique, which we call LDF-CLOCK (Least-Dirty-
First CLOCK), is effective in reducing the write traffic to
PCM significantly by replacing pages incurring small
writing.

Moreover, in contrast to the LRU (Least Recently
Used) replacement policy that needs to perform list
manipulations or time-stamping on every memory
reference, LDF-CLOCK does not require neither time-
stamping nor list manipulations unless page faults occur.
This makes LDF-CLOCK suitable for virtual memory
environments that allow OS controls only upon page
faults. The other strength of LDF-CLOCK is that it does
not degrade the page fault ratio significantly even though
it reduces large write traffic to PCM. This is because
LDF-CLOCK does not evict recently referenced pages
similar to the original CLOCK algorithm.

Experimental results show that LDF-CLOCK reduces
the write traffic to PCM by 22.9% on average and up to
73.7% compared to the CLOCK algorithm. We also
show that the lifespan of PCM is extended by 49.0% and
the energy consumption of PCM is reduced by 3.0% on
average by using LDF-CLOCK.

II. REPLACEMENT POLICIES FOR VIRTUAL

MEMORY SYSTEMS

Page references in a virtual memory environment have
temporal locality in that a more recently referenced page
is more likely to be referenced again soon. In terms of
the hit ratio, the LRU policy is known to be optimal for
references which exhibit this property [13]. LRU aligns
all pages in the memory in the order of their most recent
reference time, and replaces the least recently used page
whenever free page frames are needed. It is the most
popular replacement algorithm in various caching
environments including file system buffer cache since it
performs well but has constant time and space overheads.

Nevertheless, LRU has a critical weakness in virtual
memory environments. On every memory reference,
LRU needs to move a page to the most recently used
position in the list. This involves some list manipulations
which cannot be handled by the paging unit hardware.
Thus, list implementation of LRU is generally used in
file system buffer cache, in which list manipulation by
OS is possible on every memory references. Though
LRU can also be implemented by hardware, this is not
feasible in virtual memory systems as it should maintain
the time-stamp of each page and update it upon every
memory references. Thus, hardware implementation of
LRU is usually adopted in cache memory systems, which
have limited associativity.

Due to this reason, in virtual memory systems,
CLOCK was introduced as an efficient way to
approximate the workings of LRU [14]. Instead of
keeping pages in the order of reference time, CLOCK
only monitors whether a page has recently been
referenced or not with one reference bit per page.
Whenever a page is referenced (i.e., read or written), the
reference bit is set to 1 by the paging unit hardware.
CLOCK resets this bit to 0 periodically to ensure that a
page will have reference bit set only if it has been
accessed at least once from the duration of the last reset.

Table 1. Comparison of memory technologies
 DRAM PCM

Cell size 6F2 5F2
MLC N/A 4

Read Latency 20 ns 20-100 ns
Write Latency 20 ns 100-500 ns

Endurance 1016 106-108
Retention Volatile (64 ms) Non-volatile (10yr)

L2 cache

L1 I-cache

PCM memory

DRAM buffer

Last level cache

CPU
L1 D-cache

PCM
memory

DRAM
memory

Linear address space

L2 cache

L1 I-cache

Last level cache

CPU
L1 D-cache

L2 cache

L1 I-cache

DRAM memory

Last level cache

CPU
L1 D-cache

PCM swap device

 (a) (b) (c)

Fig. 1. Different memory architecture with PCM.

70 SEUNGHOON YOO et al : LDF-CLOCK: THE LEAST-DIRTY-FIRST CLOCK REPLACEMENT POLICY FOR PCM-BASED SWAP …

To do this, CLOCK maintains pages in a circular list.
Whenever free page frames are needed, CLOCK
sequentially scans through the pages in the circular list,
starting from the current position, that is, next to the
position of the last evicted page. This scan continues
until a page with a reference bit of 0 is found and that
page is then replaced. For every page with reference bit
of 1 in the course of the scan, CLOCK clears the
reference bit to 0, without removing the page from the
list.

The reference bit of each page indicates whether that
page has recently been accessed or not; and a page which
is not referenced until the clock-hand comes round to that
page again is certain to be replaced. Even though
CLOCK does not replace the LRU page, it replaces a
page that has not been referenced recently, so that
temporal locality is exploited to some extent. In addition
to this, since it does not require any list manipulation on
memory hit, CLOCK is suitable for virtual memory
environments.

III. THE LDF-CLOCK POLICY

1. System Architecture

Fig. 1(c) shows the target system architecture of LDF-

CLOCK. LDF-CLOCK is adopted as a page replacement
algorithm in the main memory layer on top of the PCM
swap device. The main memory transfers data to/from
LLC (Last Level Cache) in a sub-page (or a cache block)
granularity, while communicates with the PCM swap
device in a page granularity. In our study, the size of a
page is set to 4KB and the size of a sub-page to 512B by
which a page consists of 8 sub-pages.

For each page, LDF-CLOCK maintains a reference bit
and a valid bit to indicate whether the page is recently
accessed and contains valid data, respectively. A page
also needs a dirty bit to represent whether it has been
modified after entering memory so that changes can be
reflected to the swap device when it is evicted. LDF-
CLOCK maintains a dirty bit for each sub-page to
quantify the expected write traffic by eviction of each
page. The dirty bit is set when the LLC cache block is
written back to the memory page. The dirty bit of 1
indicates that the sub-page should be flushed to PCM
swap device when the page it belongs to is replaced from

memory since it has been changed while resident in the
memory.

To implement the LDF-CLOCK algorithm, sub-page
dirty information should be maintained in each page
table entry. As TLB is a cache of the page table, it also
needs sub-page dirty information. This necessitates the
modification of TLB entries as well as page table entries.
This may be a hurdle to adopt LDF-CLOCK in current
systems promptly, but as the underlying hardware device
is changed from traditional swap storage (i.e. HDD) to
new medium (PCM), such modifications are essential to
utilize the full advantages of PCM.

2. Algorithm Details

LDF-CLOCK selects a replacement victim based on

the state of the reference bit and dirty bits of each page to
reduce the number of page faults and the write traffic to
PCM simultaneously. LDF-CLOCK sets the reference bit
of a page to 1 when the page is accessed, and it also sets
the dirty bit of the accessed sub-page when the access is
write.

Similar to CLOCK, LDF-CLOCK also uses a clock-
hand that traverses in one direction over the circular list
of pages. Whenever replacement is needed to
accommodate a new page, LDF-CLOCK considers two
important metrics: recency and dirtiness. Recency is
important for virtual memory workloads, which exhibit
strong temporal locality. The reference bit of each page
is an indication of recency. In order to reduce the number
of page faults, LDF-CLOCK restricts victim candidates
for replacement to those pages with the reference bit of
0. To reduce the write traffic to PCM as well, LDF-
CLOCK also considers the dirtiness of a page, which is
defined as the number of dirty sub-pages within a page.

During the victim selection process, LDF-CLOCK
checks the reference bit of the page pointed by the clock-
hand. If the reference bit is 1, it is reset to 0, and the
clock-hand is advanced to the next page. This step is
repeated until the clock-hand comes across a page with
the reference bit of 0, and then, stops at that point. Now,
the set of all pages, which currently have their reference
bit of 0 is considered to be victim candidates. Of these,
LDF-CLOCK selects the page with the minimum number
of dirty sub-pages as a victim. This policy allows pages
referenced recently to remain in memory, while reducing

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 71

write traffic to PCM by evicting a page that does not
incur much PCM writing. If there exist multiple pages
that have the same number of minimum dirty sub-pages,
the page whose reference bit was least recently reset to 0
is evicted.

As all pages with the reference bit of 0 are victim
candidates, a naive implementation of LDF-CLOCK
requires the time overhead of O(n), where n is the
number of page frames in memory. To eliminate such
inefficiency, we use multiple list structures that separate
pages with different number of dirty sub-pages. In
particular, we use 9 lists, and each list manages pages
with the dirty sub-pages of 0 to 8 in the FIFO order. Thus,
when the clock-hand comes across a page with the
reference bit of 0, LDF-CLOCK replaces the first page in
the list with minimum dirty sub-pages. Note that these
operations can be performed in a constant time
complexity.

Fig. 2 shows the workings of LDF-CLOCK. This
example assumes that a page consists of four sub-pages.
When replacement is needed, LDF-CLOCK checks the
reference bit of the page pointed by the clock-hand (Fig.
2(a)). As the reference bit is 1, it is reset to 0, and the
clock-hand is advanced to the next page (Fig. 2(b)).
Again, as the reference bit of Page 2 is 1, it is cleared and
the clock-hand is advanced to Page 3 (Fig. 2(c)). Now,
the clock-hand stops at this location as the reference bit
of Page 3 is 0. In this situation, Pages 1, 2, 3, 5, and 8 are
considered as candidates for eviction as their reference
bit is 0. Of these, Page 8 is finally selected as a victim as
it has the smallest number of dirty sub-pages. As a result,
LDF-CLOCK reduces write traffic to PCM to one fourth

compared to original CLOCK that possibly evicts Page 3
with no awareness of dirtiness.

IV. PERFORMANCE EVALUATION

1. Experimental Setup

We now present the performance evaluation results to

assess the effectiveness of LDF-CLOCK. A trace-driven
simulation is performed to manage the replacement
algorithm of a virtual memory system. The size of a page
is set to 4KB which is common to most operating
systems. The size of a sub-page is set to 512B
considering the block size of the last-level cache. The
characteristics of PCM used in our experiments are
summarized in Table 2 [3, 4, 20].

The traces were acquired by a modified version of the
Cachegrind tool from the Valgrind 3.2.3 toolset [15]. We
capture virtual memory access traces from four different
applications used on Linux Xwindows, namely, the
freecell game, the kghostview PDF file viewer, the
firefox web browser, and the gnuplot graphing utility.
We filter out memory references that are accessed
directly from the CPU cache memory and also reflect the
write-back property of the cache memory. The
characteristics of these traces are described in Table 3.

Table 2. PCM characteristics used in the experiments
Read/Write Latency 50 / 500 (ns/cache block)
Read/Write Energy 0.2 / 1.0 (nJ/bit)

Static Power 0.1 (W/GB)
Endurance 107

Dirty
Dirty

Dirty
Clean

Dirty
Clean

Clean

Dirty
Dirty

Clean

Page 7

Page 1

Page 5

Clean

Dirty

Dirty
Dirty
Dirty

Page 3

Dirty

1

1

0

0

Clean
Clean
Dirty

Page 2

Dirty

Dirty
Dirty
Dirty

Page 4

Clean

Clean
Clean
Clean
Clean

Dirty
Clean
Clean

Page 8

Clean

Page 6

11

0 1

Dirty
Dirty

Dirty
Clean

Dirty
Clean

Clean

Dirty
Dirty

Clean

Page 7

Page 1

Page 5

Clean

Dirty

Dirty
Dirty
Dirty

Page 3

Dirty

0

1

0

0

Clean
Clean
Dirty

Page 2

Dirty

Dirty
Dirty
Dirty

Page 4

Clean

Clean
Clean
Clean
Clean

Dirty
Clean
Clean

Page 8

Clean

Page 6

11

0 1

Dirty
Dirty

Dirty
Clean

Dirty
Clean

Clean

Dirty
Dirty

Clean

Page 7

Page 1

Page 5

Clean

Dirty

Dirty
Dirty
Dirty

Page 3

Dirty

0

1

0

0

Clean
Clean
Dirty

Page 2

Dirty

Dirty
Dirty
Dirty

Page 4

Clean

Clean
Clean
Clean
Clean

Dirty
Clean
Clean

Page 8

Clean

Page 6

11

0 0

 (a) (b) (c)

Fig. 2. Working of the LDF-CLOCK policy.

72 SEUNGHOON YOO et al : LDF-CLOCK: THE LEAST-DIRTY-FIRST CLOCK REPLACEMENT POLICY FOR PCM-BASED SWAP …

The performance of LDF-CLOCK is compared with
CLOCK and MIN-DIRTY. MIN-DIRTY is an algorithm
that replaces the page containing minimum number of
dirty sub-pages, which is devised for the comparison
purpose.

2. Experimental Results

Fig. 3 shows the amount of data written to PCM for

LDF-CLOCK and MIN-DIRTY normalized to CLOCK
as the memory size is varied. As shown in the figure,
LDF-CLOCK significantly reduces the write traffic to
PCM compared to original CLOCK for a wide range of
memory sizes and a variety of workloads. Specifically,
LDF-CLOCK reduces the write traffic to PCM by an
average of 22.9% and up to 73.7% compared to CLOCK.
The write traffic of MIN-DIRTY is expected to be less
than that of LDF-CLOCK as it preserves pages with
more dirty data in memory as much as possible. However,

it performs worse than LDF-CLOCK in most cases.
Specifically, MIN-DIRTY incurs much more PCM
writes than LDF-CLOCK when the DRAM size is small.
This implies that dirty pages maintained by MIN-DIRTY
are cold pages that do not incur writes again while some
evicted pages by MIN-DIRTY must be hot pages which
are written again although they are less dirty. This will be
quantified more clearly through the total elapsed time
and the energy consumption results in the next
paragraphs.

Fig. 4 shows the total elapsed time of LDF-CLOCK
and MIN-DIRTY normalized to CLOCK. As shown in
the figure, the performance degradation of LDF-CLOCK
is very small compared to CLOCK though it reduces
write traffic to PCM significantly. This is because LDF-
CLOCK selects a victim page with the same conditions
with respect to the re-reference likelihood compared to
original CLOCK. That is, both LDF-CLOCK and
CLOCK replace a page only after its reference bit
becomes 0. In contrast, the performance of MIN-DIRTY
is degraded significantly because it does not consider the
reference recency of pages.

Let us now move on to the power issue. Power
consumption in PCM can be divided into static and
active power consumption. Static power consumption is
necessary even when PCM is idle. Due to its non-volatile
characteristics, PCM does not need refresh operations,

Table 3. Memory usage and reference count for each workload.
memory access count

workload footprint
(KB) I-read D-read D-write

freecell 2,521 114,233 315,902 60,040
firefox 8,887 1,886,877 2,848,847 483,677
gnuplot 3,182 3,193 112,600 110,286
kgview 4,347 380,609 1,061,986 103,540

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

256 512 1024 2048 4096 8192

N
or

m
al

ize
d

w
rit

e
tr

af
fic

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

0.0

0.5

1.0

1.5

2.0

256 512 1024 2048 4096 8192

N
or

m
al

ize
d

w
rit

e
tr

af
fic

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 (a) freecell (b) firefox

0.0

0.2

0.4

0.6

0.8

1.0

1.2

256 512 1024 2048 4096 8192

N
or

m
al

ize
d

w
rit

e
tr

af
fic

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

256 512 1024 2048 4096 8192

N
or

m
al

ize
d

w
rit

e
tr

af
fic

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 (c) gnuplot (d) kghostview

Fig. 3. Write traffic to PCM for LDF-CLOCK and MIN-
DIRTY normalized to CLOCK as the size of main memory is
varied.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

256 512 1024 2048 4096 8192

N
or

m
al

ize
d

el
pa

se
d

tim
e

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

0.0

1.0

2.0

3.0

4.0

5.0

6.0

256 512 1024 2048 4096 8192

N
or

m
al

ize
d

el
pa

se
d

tim
e

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 (a) freecell (b) firefox

0.0

0.2

0.4

0.6

0.8

1.0

1.2

256 512 1024 2048 4096 8192

N
or

m
al

ize
d

el
pa

se
d

tim
e

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

256 512 1024 2048 4096 8192

N
or

m
al

ize
d

el
pa

se
d

tim
e

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 (c) gnuplot (d) kghostview

Fig. 4. Total elapsed time of LDF-CLOCK and MIN-DIRTY
normalized to CLOCK as the size of main memory is varied.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 73

and thus its static power consumption is very small
compared to that of DRAM. Active power consumption
refers to the energy dissipated when data is being read
and written. In our experiments, total power consumption
Ptotal is calculated as

 Ptotal = Pstatic + Pactive

where

Pstatic = Unit_static_power (W/GB) * memory_size (GB)
Pactive = (Nread * Eread(J) + Nwrite* Ewrite(J)) /
 (Nread * Lread(ns) + Nwrite * Lwrite(ns)).

Unit_static_power is the static power per capacity, and

Nread and Nwrite are the number of reads and writes,
respectively. Eread and Ewrite refer to the energy required
for read and write operations, respectively. Lread and Lwrite
are the average latency of a read and a write operation,
respectively.

Fig. 5 shows the energy consumption of PCM when
using LDF-CLOCK and MIN-DIRTY normalized to
CLOCK. The detailed parameters used in this experiment
are listed in Table 3. As shown in the figure, the energy-
savings of LDF-CLOCK is 3.0% on average and up to
6.9%, compared to CLOCK. The energy-savings here are
small as most workloads are read-intensive.

Finally, we show the effectiveness of LDF-CLOCK
with respect to the expected lifetime of PCM. We
calculate the expected lifetime of PCM assuming that all
writes are equally distributed to PCM. Equal distribution
may seem like an unrealistic assumption. However, as
we do not deal with the management of PCM, this is a
fair approach when we consider only page replacement
policies. Furthermore, recent technologies indicate that
the wear-leveling of PCM aiming to evenly distribute
PCM writes, can be supported within a PCM controller
[1, 3]. Hence, we consider this to be a valid assumption.
Fig. 6 shows the lifetime of PCM for LDF-CLOCK and
MIN-DIRTY normalized to CLOCK. As can be seen,
LDF-CLOCK extends the lifetime of PCM by a large
margin compared to CLOCK. Specifically, the lifetime is
extended by 49.0% on average and up to 279.9%,
compared to CLOCK.

V. RELATED WORKS

PCM hardware technology has already reached a
certain level of maturity. Specifically, as of 2013, PCM
has been commercialized and has been equipped in
certain types of smartphones. Patents published recently
by Intel describe a detailed micro-architecture to support
PCM as memory and/or a storage device, implying that
PCM based computer architectures are imminent [16, 17].

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

256 512 1024 2048 4096 8192N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

256 512 1024 2048 4096 8192N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 (a) freecell (b) firefox

0.0

0.2

0.4

0.6

0.8

1.0

1.2

256 512 1024 2048 4096 8192N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

256 512 1024 2048 4096 8192N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 (c) gnuplot (d) kghostview

Fig. 5. Energy consumption of LDF-CLOCK and MIN-DIRTY
normalized to CLOCK as the size of main memory is varied.

0.0

0.5

1.0

1.5

2.0

2.5

256 512 1024 2048 4096 8192

N
or

m
al

iz
ed

 L
ife

tim
e

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

256 512 1024 2048 4096 8192

N
or

m
al

iz
ed

 L
ife

tim
e

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 (a) freecell (b) firefox

0.0

0.2

0.4

0.6

0.8

1.0

1.2

256 512 1024 2048 4096 8192

N
or

m
al

iz
ed

 L
ife

tim
e

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

256 512 1024 2048 4096 8192

N
or

m
al

iz
ed

 L
ife

tim
e

DRAM Size (KB)

LDF-CLOCK MIN-DIRTY

 (c) gnuplot (d) kghostview

Fig. 6. PCM lifetime for LDF-CLOCK and MIN-DIRTY
normalized to CLOCK as the size of main memory is varied.

74 SEUNGHOON YOO et al : LDF-CLOCK: THE LEAST-DIRTY-FIRST CLOCK REPLACEMENT POLICY FOR PCM-BASED SWAP …

Two major PCM manufacturers, Micron and Samsung,
are forecasting that the primary interfaces for PCM is
likely to be DIMM and PCI-e rather than other block I/O
interfaces [18]. This is because existing block I/O
interfaces such as SATA or SAS are not fast enough to
support high-performance PCM devices, limiting the full
advantages that PCM conveys. In addition, numerous
activities are underway to re-architect interfaces and the
underlying software to maximally utilize the
developments that are happening with PCM technologies
[19].

Studies on using PCM as main memory have focused
on enhancing write performance and endurance of PCM.
There are three categories of research that aims to
achieve these goals.

The first category uses a certain amount of DRAM to
reduce the number of writes that occurs on PCM [1, 4].
Dhiman et al. present a hybrid PCM and DRAM memory
architecture called PDRAM [4]. They focus on balancing
the write count of PCM by moving data located at a PCM
page to a DRAM page if the write count of the PCM
page becomes large. However, they do not consider the
placement or replacement issues. Qureshi et al. present
an architecture that uses DRAM as the last level cache
memory of PCM main memory [1]. This architecture
caches both clean and dirty pages in DRAM cache. Zhou
et al. present cache partitioning and replacement
algorithms under this architecture [9]. Their algorithms
aim at reducing the cache miss ratio as well as
writebacks from the DRAM cache. They also consider
the balance of PCM write queues in the design of
replacement algorithms. Seok et al. predicts page access
patterns and tries to migrate read-intensive pages to PCM
and write-intensive pages to DRAM [10]. For prediction
of the read and write access pattern, they calculate the
weighting value using the ratio of writes to total
references. Their research is similar to our research in
maintaining data to be written again on non-PCM
partitions. However, their algorithm requires exact time
information for every reference, which is a requirement
difficult to fulfill in virtual memory systems.

The second category is to reduce the number of PCM
writes by programming only the cells whose contents
have been changed. This technique could enhance the
endurance of PCM but it accompanies comparison
overhead. Qureshi et al. present the line-level write-back

(LLWB) technique that writes only dirty cache lines
within a PCM page [1]. To do this, they use a dirty bit
within each cache line that retains whether the cache line
is modified or not. Yang et al. present the data
comparison write that compares each bit in a PCM page
and then writes only modified bits [6]. Similar work is
also performed by Zhou et al. [5]. Cho and Lee present
the flip-n-write technique, which flips all bits in a page if
it incurs less number of bit writes [7]. Wongchaowart et
al. present a content-aware block placement algorithm
that selects a free block among those with similar
contents in the free block lists [8].

The third category is the wear-leveling technique to
evenly distribute PCM writes. Coarse-grained and fine-
grained wear-leveling techniques have been separately
studied. For coarse-grained wear-leveling, Zhou et al.
present the segment swapping technique that swaps old
and young pages periodically [5]. For fine-grained wear-
leveling, Zhou et al. present the row shifting technique,
which shifts the position of bits in a page in order to
balance the number of bit writes within a page [5].
Qureshi et al. present a similar technique called FGWL
(fine grained wear-leveling) that stores the lines of each
page in PCM in a rotated manner [1].

VI. CONCLUSION

This paper presented a new page replacement policy,
called LDF-CLOCK, for PCM swap devices. LDF-
CLOCK reduces write traffic to PCM by replacing the
least dirty page among pages not recently referenced. We
have shown that LDF-CLOCK reduces the write traffic
to PCM by 22.9% on average and up to 73.7% compared
to CLOCK. We also show that the lifespan of PCM is
extended by 49.0% and the energy consumption of PCM
is reduced by 3.0% on average compared to CLOCK.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation (NRF) grant funded by the Korea
government (MEST) (No. 2011-0028825).

REFERENCES

[1] M. Qureshi, V. Srinivasan, and J. Rivers, “Scalable

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 75

high performance main memory system using
phase-change memory technology,” Proc. IEEE
ISCA Conf., pp. 24-33, 2009.

[2] E. Lee, H. Bahn, and S.H. Noh, “Unioning of the
buffer cache and journaling layers with non-volatile
memory,” Proc. USENIX FAST Conf., pp. 73-80,
2013.

[3] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: a
write-history-aware page replacement algorithm for
hybrid PCM and DRAM memory architectures,”
IEEE Trans. Comput., vol. 63, no. 9, pp. 2187-2200,
2014.

[4] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: a
hybrid PRAM and DRAM main memory system,”
Proc. ACM/IEEE Design Automation Conf.,
pp.664-559, 2009.

[5] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A
durable and energy efficient main memory using
phase change memory technology,” Proc. IEEE
ISCA Conf., pp.14-23, 2009.

[6] B. Yang, J. Lee, J. Kim, J. Cho, S. Lee, and B. Yu,
“A low power phase-change random access
memory using a data-comparison write scheme,”
Proc. IEEE Symp. Circuit and Syst., 2007.

[7] S. Cho and H. Lee, “Flip-N-Write: a simple
deterministic technique to improve PRAM write
performance, energy and endurance,” Proc. IEEE
Symp. Microarchitect., 2009.

[8] B.Wongchaowart, M. Iskander, and S. Cho, “A
content-aware block placement algorithm for
reducing PRAM storage bit writes,” Proc. IEEE
MSST Conf., pp.1-11, 2010.

[9] M. Zhou, Y. Du, B. Childers, R. Melhem, and D.
Mosse, “Writeback-aware partitioning and
replacement for last-level caches in phase change
main memory systems,” ACM Trans. Architect.
Code Optimization, vol. 8, no. 4, 2012.

[10] H. Seok, Y. Park, K. Park, and K. Park, “Efficient
page caching algorithm with prediction and
migration for a hybrid main memory,” Applied
Comput. Review, vol. 11, no. 4, 2011.

[11] E. Lee, J. Jang, T. Kim, and H. Bahn, “On-demand
snapshot: an efficient versioning file system for
phase-change memory,” IEEE Trans. Knowledge &
Data Engineering, vol. 25, no. 12, pp.2841-2853,
2013.

[12] E. Lee, S. Yoo, J. Jang, and H. Bahn, Shortcut-JFS:

a write efficient journaling file system for phase
change memory, Proc. IEEE MSST Conf., 2012.

[13] E. Coffman and P. Denning, Operating Systems
Theory, Prentice-Hall, pp.241-283, 1973.

[14] R. Carr and J. Hennessy, “WSCLOCK—a simple
and effective algorithm for virtual memory
management,” Proc. ACM SOSP Conf., pp.87-95,
1981.

[15] Valgrind, http://valgrind.org/
[16] B. Nale, R. Ramanujan, M. Swaminathan, and T.

Thomas, “Memory channel that supports near
memory and far memory access,” PCT/US2011/
054421, Intel Corporation, 2013.

[17] R. Ramanujan, R. Agarwal, and G. Hinton,
“Apparatus and method for implementing a multi-
level memory hierarchy having different operating
modes,” US 20130268728 A1, Intel Corporation,
2013.

[18] PCM product, http://www.micron.com/products/
phase-change-memory, Micron, 2013.

[19] R. L. Coulson, “Co-optimizing systems, OS, appli-
cations, SSDs and NVM,” Proc. Non-Volatile
Memories Workshop, 2012.

[20] E. Lee, H. Bahn, S. Yoo, S. H. Noh, “Empirical
study of NVM storage: an operating system’s
perspective and implications,” Proc. IEEE
MASCOTS Conf., 2014.

Seunghoon Yoo received the BS
degree in computer science from
Korea Air Force Academy in 2006,
and the MS degree in computer
engineering from Seoul National
University in 2011, and is currently
working toward the PhD degree in

computer engineering at Seoul National University. He is
also with the Korea Air Force Academy. His research
interests include flash memory, storage system, and
virtualization software.

76 SEUNGHOON YOO et al : LDF-CLOCK: THE LEAST-DIRTY-FIRST CLOCK REPLACEMENT POLICY FOR PCM-BASED SWAP …

Eunji Lee received the PhD degree
in computer engineering from Seoul
National University in 2012. She was
a visiting scholar at the Department
of EECS, the University of Michigan,
Ann Arbor, and a senior engineer at
the Samsung Electronics, Co., Ltd.

She is currently an assistant professor in the software
department, Chungbuk National University, Korea. Her
research interests include operating systems, embedded
systems, and storage systems. She has published more
than 40 papers in leading conferences and journals in
these fields, including IEEE Trans. Computers, IEEE
Trans. Knowledge & Data Engineering, and ACM Trans.
Storage. She also received the Best Paper Awards at
USENIX FAST in 2013.

Hyokyung Bahn received the BS,
MS, and PhD degrees in computer
science from Seoul National University,
in 1997, 1999, and 2002, respectively.
He is currently a full professor of
computer engineering at Ewha
University, Korea. His research

interests include operating systems, storage systems,
embedded systems, and real-time systems. He received
the Best Paper Awards at the USENIX Conference on
File and Storage Technologies in 2013.

