DOI QR코드

DOI QR Code

가능 최대강수량에 의한 토석류 범람 예측

Prediction of a Debris Flow Flooding Caused by Probable Maximum Precipitation

  • 김연중 ((주)건설기술연구소 수자원시스템부) ;
  • 윤종성 (인제대학교 토목도시공학부) ;
  • ;
  • 허동수 (경상대학교 해양토목과)
  • Kim, Yeon-Joong (Water Resource System Division, CTI Engineering Co., Ltd.) ;
  • Yoon, Jung-Sung (Dept. of Civil and Urban Eng., Inje University) ;
  • Kohji, Tanaka (Water Resource System Division, CTI Engineering Co., Ltd.) ;
  • Hur, Dong-Soo (Dept. Ocean Civil Eng., Gyeongsang National University)
  • 투고 : 2014.10.31
  • 심사 : 2015.01.13
  • 발행 : 2015.02.28

초록

최근 기후 변화에 따른 게릴라성 호우에 의한 전 세계 도심 속 산지 지역에서 토석류의 발생 빈도수가 증가하고 있으며, 이 결과 더 많은 인명피해와 주요 시설물 파괴 등의 피해가 사회적 큰 문제로 대두되고 있다. 현재까지는 도심지역 재해 관리 및 피난 계획 수립 시, 토석류 범람은 별도로 취급되어 피난 권고 시스템이 구축되고 있으나 피난계획 수립 시, 재해 발생 가능성을 고려한 여러 재해를 기반으로 통합적인 대책 수립이 필요하며 향후, 현재보다 더 큰 강우가 발생할 가능성이 굉장히 크며 이에 대한 대책 수립의 중요성 또한 강조되고 있다. 본 연구에서는 실제 지역에서의 토석류의 유동형태를 파악하고, 외력조건으로 DAD 분석을 통해 가능최대 강우량과 유출량을 산정하며 주거지 지역에서의 토석류 영향범위 파악을 목적으로 한다. 실제 지역에서의 토석류 특성을 분석하기 위해 토석류 흐름 패턴, 퇴적 깊이, 도달속도, 발생된 토사량 및 토석류 이동거리를 평가했다. DAD 해석 결과, 피크 시간 강우량은 국지성 호우에 의해 약 135mm, 24시간 누적 최대강우량은 태풍에 의한 호우로 약 544mm로 조사 되었다. 또한 토석류에 의한 영향범위를 파악 하였다.

In recent years, debris flow disaster has occurred in multiple locations between high and low mountainous areas simultaneously with a flooding disaster in urban areas caused by heavy and torrential rainfall due to the changing global climate and environment. As a result, these disasters frequently lead to large-scale destruction of infrastructures or individual properties and cause psychological harm or human death. In order to mitigate these disasters more effectively, it is necessary to investigate what causes the damage with an integrated model of both disasters at once. The objectives of this study are to analyze the mechanism of debris flow for real basin, to determine the PMP and run-off discharge due to the DAD analysis, and to estimate the influence range of debris flow for fan area according to the scenario. To analyse the characteristics of debris flow at the real basin, the parameters such as the deposition pattern, deposit thickness, approaching velocity, occurrence of sediment volume and travel length are estimated from DAD analysis. As a results, the peak time precipitation is estimated by 135 mm/hr as torrential rainfall and maximum total amount of rainfall is estimated by 544 mm as typhoon related rainfall.

키워드

참고문헌

  1. Aasida, A., and Takahashi, T. (1980). "Study on debris flow control, hydraulic function of grid type open dam." Annuals of the Disaster Prevention Research Institute, Kyoto University, No. 23 B-2, pp. 443-441. (in Japanese with English Synopsis)
  2. Bagnold, R.A. (1954). "Experiments on a gravity free dispersion of large solid spheres in a newtonian fluid under shear." Pro. Roy. Soc. A, 225, pp. 49-63. https://doi.org/10.1098/rspa.1954.0186
  3. Egashira, S., Miyamoto, K., and Itoh, T. (1997). "Constitutive equations of debris flow and their applicability." Proceedings of the 1st Conference of Debrisflow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp. 340-349.
  4. Kim, N.W., and Won, Y.S. (2004). "DAD analysis on storm movement." Korea Water Resources Association, KWRA, Vol. 37, No. 5, pp. 437-448. https://doi.org/10.3741/JKWRA.2004.37.5.437
  5. Kim, Y., Nakagawa, H., Kawaike, K., and Zhang, H. (2012). "Numerical analysis of debris flow deposition on breaker structure." Annual Journal of Hydraulic Engineering, JSCE, Vol. 68, No. 4, pp. 1-6.
  6. Kim, Y., Nakagawa, H., Kawaike, K., and Zhang, H. (2013). "Study on the function of a closed-type sabo dam with a flap for debris flow." Advances in River Research-Fukuka et al. (eds)(C)2013 Taylor & Francis Group, London, ISBN 978-1-138-00062-9, 12th International Symposium River Sedimentation, pp. 1945-1954.
  7. Nakagawa, H., Takahashi, T., Satofuka Y., and Kawaike, K. (2003). "Numerical simulation of sediment disaster caused by heavy rainfall in Camuri Grande basin, Venezuela 1999." Proceedings of the Third conference of Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Switzerland, Rotterdam, pp. 671-682.
  8. Nakagawa, H., Takahashi, T., Sawada, T., and Satofuka Y. (1996). "Design hydrograph and evacuation planning for debris flow." Annuals of the Disaster Prevention Research Institute, Kyoto University, No. 39 B-2, pp. 347-371. (in Japanese with English Synopsis)
  9. NILIM. (2007). "Manual of technical standard for establishing sabo master plan for debris flow and driftwood." Technical note of national institute for land infrastructure management No. 364.
  10. Okuda, S., Suwa, H., Okuuunishi, K., Nakano, M., and Yokoyama, K. (1977). "Synthetic observation on debris flow, Part 3. Observation at valley Kamikamihorizawa of Mt. Yakedake in 1976." Annuals of the Disaster Prevention Research Institute, Kyoto University, No. 21 B-1, pp. 277-296. (in Japanese with English Synopsis)
  11. Osanai, N., Mizuno, H., and Mizuyama, T. (2010). "Design standard of control structures aginst debris flow in Japan." Journal of Disaster Research, Vol. 5, No. 3, pp. 307-314. https://doi.org/10.20965/jdr.2010.p0307
  12. Qian, C., Sasada, T., and Yamada, T. (2012) "Theoretical derivation of synthesized rational formula and runoff analysis using high-resolution rainfall data." Proceedings of the 10th Intl. Conf. on Hydroscience & Engineering. Orlando, Florida, U.S.A., pp. 1-10.
  13. Takahashi, T. (1977). "A mechanism of occurrence of mud-debirs flows and their characteristics in motion." Annuals of the Disaster Prevention Research Institute, Kyoto University, No. 20 B-2, pp. 405-435. (in Japanese with English Synopsis)
  14. Takahashi, T. (1991). "Debris flow." Monograph series of IAHR, Balkema, pp. 1-165.
  15. Takahashi, T., Nakagawa, H., Harada, T., and Yamashiki, Y. (1992). "Routing debris flows with particle segregation." Journal of hydraulic Engineering, ASCE, Vol. 118, No. 11, pp. 1490-1507. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:11(1490)

피인용 문헌

  1. Two-dimensional Numerical Analysis for Debris Flows at Jecheon vol.15, pp.6, 2015, https://doi.org/10.9798/KOSHAM.2015.15.6.207