DOI QR코드

DOI QR Code

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry

해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법

  • Mo, Ahra (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Son, Juwon (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Park, Yongchul (Department of Ocean Sciences, College of Natural Sciences, Inha University)
  • 모아라 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 손주원 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 박용철 (인하대학교 자연과학대학 해양과학과)
  • Received : 2014.03.25
  • Accepted : 2015.01.30
  • Published : 2015.02.25

Abstract

To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.

본 연구에서 새롭게 도출된 총알칼리도($Alk_T$)와 총이산화탄소($TCO_2$) 분석방법의 정밀도와 정확도를 확인하기 위해 스크립스 해양 연구소에서 제조된 이산화탄소 표준물질(Batch 132; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$)을 분석하였다. 분석 결과, 총알칼리도와 총이산화탄소의 평균 농도는 각각 $2354.09{\mu}mol/kg$$2089.60{\mu}mol/kg$으로 제시된 농도 값과 총알칼리도는 약 5.6%, 총이산화탄소는 약 2.3%의 차이를 보였다. 기존의 알칼리도 측정방법(Gran Titration)과 본 연구 분석 방법을 중탄산나트륨($NaHCO_3$) 0.340 g($Alk_T$ $2023.33{\mu}mol/kg$) 용액에 적용하여 비교 실험을 진행한 결과, 기존의 방법으로 측정된 중탄산나트륨의 평균 알칼리도 농도는 $2193.39{\mu}mol/kg$(sd=57.15, n=7)이었고, 본 연구방법의 경우 $2017.02{\mu}mol/kg$(sd=10.98, n=7)의 알칼리도 평균 농도를 보였다. 또한, 초순수와 해수에 중탄산 나트륨을 첨가해 총알칼리도의 수득률(recovery yield)을 측정한 실험에서 초순수에 대한 첨가실험은 다양한 농도 변화 범위($0{\sim}4952.39{\mu}mol/kg$) 내에서 평균 약 100.8%($R^2$=0.999), 해수에 대한 첨가실험은 다양한 농도 변화 범위($0{\sim}2041.32{\mu}mol/kg$)내에서 평균 약 102.3%($R^2$=0.999)로 나타났다. 해수의 이산화탄소 분압($pCO^2$)을 측정하는 Pro Oceanus사의 PSI-Pro$^{TM}$을 사용하여 측정된 이산화탄소 분압과 본 연구를 통해 측정된 $H_2CO_3^*$ 농도와의 비교 실험을 시행한 결과, 약 2주간의 경시변화 실험을 통하여 측정된 이산화탄소 분압은 $427{\sim}705{\mu}atm$의 변화를 보였고, 본 연구방법으로 측정된 $H_2CO_3^*$의 농도는 $9.15{\sim}15.24{\mu}mol/kg$의 변화를 보였다. 측정된 분압과 계산된 $H_2CO_3^*$ 농도의 결정계수($R^2$)는 0.977로 나타났다. 본 연구방법을 적용해 동해 강릉 사천항의 표층 해수 중의 총알칼리도와 총이산화탄소의 일 변화 측정실험 결과, 두 항목의 농도는 일몰 이후 증가하고 일출 이후부터는 감소하는 경향을 보였다. 총이산화탄소와 용존산소의 농도는 상반되는 경향을 나타냈는데 이는 식물플랑크톤의 광합성과 호흡의 영향으로 생각된다. 현장 선상에서 시행된 북동태평양의 클라리온-클리퍼톤 균열대(Clarion-Clipperton Fracture Zone)에서 총알칼리도와 총이산화탄소의 측정실험 결과, 표층(0~60 m)과 저층(200~2000 m)에서 총알칼리도의 평균 농도는 각각 $2422.38{\mu}mol/kg$(sd=78.73, n=20)과 $2465.87{\mu}mol/kg$(sd=57.68, n=103)로 측정되었고, 표층과 저층저층의 총이산화탄소 평균 농도는 각각 $2134.47{\mu}mol/kg$(sd=65.40, n=20)과 $2431.87{\mu}mol/kg$(sd=65.02, n=103)으로 측정되었다. 총알칼리도와 총이산화탄소의 수직 분포는 수심이 증가할수록 점차 농도가 증가하는 경향을 확인할 수 있었으며, 측정된 농도 결과는 부근해역에서의 기존 연구결과보다 약간 높은 경향을 보였다.

Keywords

References

  1. Almgren, T., Dyrssen, D. and Strandberg, M., 1975, "Determination of pH on the moles per kg seawater scale ($M_w$)", Deep Sea Research and Oceanographic Abstracts, Elsevier, 635-646.
  2. Anderson, D.H. and Robinson, R.J., 1946, "Rapid electrometric determination of alkalinity of sea water using glass electrode", Industrial & Engineering Chemistry Analytical Edition, Vol. 18, No. 12, 767-769. https://doi.org/10.1021/i560160a011
  3. Bala, G., 2013, "Digesting 400 ppm for global mean $CO_2$ concentration", Current science, Vol. 104, No. 11, 1471-1472.
  4. Davies, C.W., 1962, Ion association, Butterworths, London.
  5. Dickson, A., 1981, "An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data", Deep Sea Research Part A. Oceanographic Research Papers, Vol. 28, No. 6, 609-623. https://doi.org/10.1016/0198-0149(81)90121-7
  6. Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J. and Millero, F.J., 2004, "Impact of anthropogenic $CO_2$ on the $CaCO_3$ system in the oceans", Science, Vol. 305, No. 5682, 362-366. https://doi.org/10.1126/science.1097329
  7. Feely, R.A., Sabine, C.L., Lee, K., Millero, F.J., Lamb, M.F., Greeley, D., Bullister, J.L., Key, R.M., Peng, T.-H., Kozyr, A., Ono, T. and Wong, C.S., 2002, "In situ calcium carbonate dissolution in the Pacific Ocean", Global Biogeochemical cycles, Vol. 16, No. 4, 1144.
  8. Gran, G., 1952, "Determination of the equivalence point in potentiometric titrations. Part II. Analyst", Vol. 77, No. 920, 661-671. https://doi.org/10.1039/an9527700661
  9. Graneli, A. and Anfalt, T., 1977, "A simple automatic phototitrator for the determination of total carbonate and total alkalinity of sea water", Analytica Chimica Acta, Vol. 91, No. 2, 175-180. https://doi.org/10.1016/S0003-2670(01)93658-X
  10. Grasshoff, K., Ehrhardt, M. and Kremling, K., 1983, Methods of seawater analysis. Second, revised and extended edition, Verlag Chemie, Weinheim, Germany.
  11. IPCC, 2005, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, United Kingdom.
  12. Kanamori, S. and Ikegami, H., 1982, "Calcium-alkalinity relationship in the North Pacific", Journal of the Oceanographical Society of Japan, Vol. 38, No. 2, 57-62. https://doi.org/10.1007/BF02110291
  13. Maita, Y., Parsons, T.R. and Lalli, C.M., 1984, A manual of chemical and biological methods for seawater analysis, Pergamon press, United Kingdom.
  14. Millero, F.J., Lee, K. and Roche, M., 1998, "Distribution of alkalinity in the surface waters of the major oceans", Marine Chemistry, Vol. 60, No.1, 111-130. https://doi.org/10.1016/S0304-4203(97)00084-4
  15. Monastersky, R., 2013, "Global carbon dioxide levels near worrisome milestone", Nature, Vol. 497, No. 7447, 13-14. https://doi.org/10.1038/497013a
  16. Moosbrugger, R.E., Wentzel, M.C., Ekama, G.A. and Marais, G.V.R., 1993, "Alkalinity measurement: Part 1-A 4 pH point titration method to determine the carbonate weak acid/base in an aqueous carbonate solution", WATER SA-PRETORIA-, Vol. 19, 11-21.
  17. Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A. and Joos, F., 2005, "Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms", Nature, Vol. 437, No. 7059, 681-686. https://doi.org/10.1038/nature04095
  18. Paquay, F.S., Zeebe, R.E., 2013, "Assessing possivle consequences of ocean lining on ocean pH, atmospheric $CO_2$ concentration and associated costs", International journal of Greenhouse Gas Control, Vol. 17, 183-188. https://doi.org/10.1016/j.ijggc.2013.05.005
  19. Pauss, A., Roza, A., Ledrut, M., Naveau, H. and Nyns, E., 1990, "Bicarbonate determination in complex acid-base solutions by a back-titration method", Environmental technology, Vol. 11, No. 5, 469-476. https://doi.org/10.1080/09593339009384887
  20. Riebesell, U., 2000, "Photosynthesis: Carbon fix for a diatom", Nature, Vol. 407, No. 6807, 959-960. https://doi.org/10.1038/35039665
  21. Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe, R.E. and Morel, F.M., 2000, "Reduced calcification of marine plankton in response to increased atmospheric $CO_2$", Nature, Vol. 407, No. 6802, 364-367. https://doi.org/10.1038/35030078
  22. Stumm, W. and Morgan, J. J., 1995, Aquatic chemistry: chemical equilibria and rates in natural waters, John Wiley & Sons, USA.
  23. Wurts, W.A., 2002, "Alkalinity and hardness in production ponds", World Aquaculture, Vol. 33, No. 1, 16-17.
  24. Yao, W. and Byrne, R.H., 1998, "Simplified seawater alkalinity analysis: Use of linear array spectrometers", Deep Sea Research Part I: Oceanographic Research Papers, Vol. 45, No. 8, 1383-1392. https://doi.org/10.1016/S0967-0637(98)00018-1

Cited by

  1. Experimental Study on Hydrodynamic Performance and Wave Power Takeoff for Heaving Wave Energy Converter vol.30, pp.5, 2016, https://doi.org/10.5574/KSOE.2016.30.5.361