
Journal of the Optical Society of Korea
Vol. 19, No. 1, February 2015, pp. 95-101

- 95 -

Approach of Self-mixing Interferometry Based on Particle Swarm 
Optimization for Absolute Distance Estimation
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To accurately extract absolute distance information from a self-mixing interferometry (SMI) signal, in 
this paper we propose an approach based on a particle swarm optimization (PSO) algorithm instead of 
frequency estimation for absolute distance. The algorithm is utilized to search for the global minimum 
of the fitness function that is established from the self-mixing signal to find out the actual distance. A 
resolution superior to 25 μm in the range from 3 to 20 cm is obtained by experimental measurement, 
and the results demonstrate the superiority of the proposed approach in comparison with interpolated FFT. 
The influence of different external feedback strength parameters and different inertia weights in the 
algorithm is discussed as well.
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I. INTRODUCTION

Laser ranging techniques are widely used for both industrial 
and scientific application in contactless measurement as 
nondestructive testing, in contrast to other measuring technologies 
that have to contact the target surface [1]. Laser ranging 
techniques have the potential to improve the productivity 
of manufacturers and the quality of manufactured products 
due to their swiftness and high precision.  

Heretofore, conventional optical distance measurement 
methods can technically be put into three categories: interfero-
metry, time-of-flight and triangulation methods [2]. It is 
undeniable that these traditional methods can exhibit high 
accuracy, but the applications are limited due to their short 
unambiguity range determined by the wavelength used [3] 
or to their complicated experimental setups. Thus, these 
methods are inappropriate when the measurement is carried 
out in a narrow space. For example, in consideration of 
their dimensions, there is not enough space to install devices 
based on conventional methods for cylinders with inner 
diameters of less than 10 centimeters.

Fortunately, this shortcoming can be overcome by a very 
interesting coherent technique called self-mixing interferometry 

(SMI) [4]. The SMI system is simpler than conventional 
interferometers because many optical elements, such as the 
beam splitter, reference mirror, and external photodetector, 
are not required [5]. The self-mixing phenomenon occurs 
when the laser beam is partially reflected by a target in an 
external cavity and mixed with the light inside the laser 
cavity, which results in variation in emitted power and 
lasing frequency [6]. Information about the motion of the 
target can be deduced by an integrated phototransistor 
through analyzing the variation.

The inquiry into distance measurement based on SMI 
has attracted much attention during the past few decades 
due to its simplicity, compactness, and low cost [7]. Many 
methods have been presented which use the linear relation 
between beat frequency and distance [8-13], such as counting 
the number of mode hops [8] or utilizing the interpolated 
FFT [13]. Most signal-processing work has focused on 
spectrum estimation algorithms until recently, and resultant 
measurement resolution has been promoted to 0.1 mm 
[13]. However, in terms of signal-processing theory, inherent 
drawbacks of the spectrum estimation algorithms such as 
spectrum leakage will influence the measurement of beat 
frequency and degrade the accuracy of distance measurement. 
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FIG. 1. (a) LD with an external cavity. (b) Equivalent model.

Moreover, further post processing such as adjustment is 
often required to extract the accurate frequency [14], 
which makes the measurement complex.

In order to avoid the shortcomings of spectrum estimation 
algorithms, we propose the use of optimization algorithms 
to estimate the distance information, which eschews spectrum 
estimation and searches for the minimum of a fitness 
function. The fitness function is established based on the 
SMI signal that contains the distance information. The function 
is a multimodal function and obtains the sole global minimum 
that corresponds to the actual distance. Because of this, we 
can estimate distance by means of searching for this global 
minimum.

Traditional optimization methods such as Newton’s method 
and some intelligence algorithms such as the genetic algorithm 
(GA) [15] and the PSO algorithm [16] can extract absolute 
distance from the self-mixing signal. Newton’s method is 
widely used among local searching algorithms due to its 
fast convergence ability. This method can be utilized if we 
initialize a certain number of points searching local optima 
simultaneously in the predicted area, and then find the 
minimum of all local optimal solutions, thus preventing 
trapping into local optima. However, the performance of 
this method depends largely on initialization of points and 
searching step size, which are difficult to adjust in practical 
measurements. What is more, the elapsed time of Newton’s 
method is higher than other optimization methods due to the 
large number of points. As to intelligence algorithms, we take 
GA and PSO under consideration, as they have versatility and 
ability to optimize various kinds of multimodal functions. 
However, the process of coding should be implemented 
before calculation, and there are some other complex operations 
in the genetic algorithm during the calculation, such as 
crossover and mutation. More parameters should be taken 
into consideration in comparison with PSO. As a result, 
we choose PSO to estimate the distance.

The paper is organized as follows: Section II presents 
the detailed theoretical analysis about self-mixing interfero-
metry and the particle swarm optimization algorithm. 
Experimental results and comparison with interpolated FFT 
are discussed in Section III. In Section IV, the influence 
of different external feedback strength parameter C and an 
optimal selection of inertia weights are presented. Conclusions 
are drawn in Section V.

II. THEORETICAL ANALYSIS

2.1. Self-mixing Interferometry
A schematic arrangement for a solitary single-mode 

laser diode (LD) under external feedback can be represented 
by a three-facet Fabry-Perot cavity and simplified by a 
two-facet Fabry-Perot cavity, as shown in Fig. 1.

Here r1 and r2 are the amplitude reflection coefficients 
of the LD facets, r3 is the amplitude reflectivity of the 
external target, l is the length of the laser cavity and L is 

the length of the external cavity. Neglecting the multiple 
reflections within the external cavity and for weak 
feedback level when the reflection coefficient r3 of the 
target is far less than r2, the frequency of the equivalent 
cavity and the emitted optical power P can be expressed 
as:
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ν0 and νF are the optical frequency of LD without feedback 
and under optical feedback, respectively, P0 is the optical 
power without light feedback, α is the linewidth enhancement 
factor, and m is the modulation coefficient. τext is the 
roundtrip time of the light beam in the external cavity [8]. 
The external feedback strength parameter C is defined by  
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here τin denotes the roundtrip time in the laser internal cavity. 
The parameter C is an important parameter affecting the 
dynamics of LD as well as its output power. Weak 
feedback level (C<1) gives a single solution of ν in Eq. 
(1) and makes νF approximate ν0 [17]. We will discuss the 
influence of this parameter in Section 4.1.

When the sawtooth current is injected into the laser, νF 
can be expressed as

)()( 0 ttrtF γνν += ,  (4)
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FIG. 2. The fitness function versus distance estimation.

here γ means the relation between lasing frequency and 
modulation current with a unit Hz/mA. F(φF) can be expressed 
as：
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The distance L is contained in F(φF) and we can 
estimate this information by PSO. For the purpose of 
application, a fitness function H is established as Eq. (6).
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L* is the estimated distance and F(L*) is the established 
function with the variable L*, n is the number of sampling 
points of the SMI signal. L* is the approximate absolute 
distance when the fitness function H obtains the minimum. 
A simulation in the range from 10 to 16 cm with the 
actual distance 13 cm was performed and the function is 
proved to be a multimodal function owning only one global 
minimum. The actual distance is obtained when the fitness 
function reaches the minimum as shown in Fig. 2.

2.2. Particle Swarm Optimization
The particle swarm optimization is a parallel evolutionary 

computation technique based on the social behavior metaphor. 
The PSO algorithm is initialized with a population of random 
candidate solutions in a predicted area, conceptualized as 
particles [18]. Each particle is treated as a point to represent 
an estimated distance and the particles are updated at each 
iteration. The ith iteration of particles can be represented 
as Xi=(xi1,xi2,…,xin), and n is the number of particles. The 
best previous position that gives the best fitness value of 
each particle is recorded and represented as Pi=(pi1,pi2,…
pin). The best particle among all the particles is denoted by 

Pig. Each particle is assigned a randomized velocity which 
adds to its position in order to change its previous position 
iteratively. The velocity is represented as Vi=(vi1,vi2,…vin). 
[19]

The velocity of each particle is updated according to its 
current position. The difference between the best position 
of each particle and the individual’s current position is 
stochastically added to the current velocity, causing the trajectory 
to oscillate around the best position of each particle. 
Simultaneously, the difference between the best position of 
all particles and the individual’s current position is also 
stochastically added to the current velocity. Thus, the particle 
is adjusted to search around the two best positions and all 
particles get close to global best position [20]. With a 
sufficient number of iterations, the global best position 
approximates the actual distance where the fitness function 
obtains the minimum. 

In summary, the jth particle (j=1,2,…n) is updated with 
the following equations [21]

v v (p x ) (p x )ijc r c r= + − + −（ ）i+1  j ij 1j 1j ij 2j 2j ig ij ,   (7)
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here c1j and c2j are two positive constants called the cognitive 
and social parameters, respectively. r1j and r2j are two random 
functions in the range [0,1]. 

The first part of the Eq. (7) is the previous velocity of 
the particle. The second part represents the private thinking 
of the particle itself and the third part represents the 
collaboration among the particles [22]. Thus the new velocity 
of each particle can be calculated with the contribution of 
its previous velocity and the distances of its current position 
from its own best experience (position) and the group’s 
best experience. Eq. (7) exhibits local search ability without 
the first part and more likely global search ability by adding 
the first part. In order to balance the two abilities, an inertia 
factor w is brought into the Eq. (7) as shown in Eq. (9) 
[23].

v wv (p x ) (p x )ijc r c r= + − + −（ ）i+1  j ij 1j 1j ij 2j 2j ig ij . (9)

The factor w plays the role of balancing the global search 
and local search. It can be a positive constant or even a 
positive linear or nonlinear function of time. The selection 
of this factor is discussed in Section 4.2.

In addition, the velocities of the particles are confined 
within [vmin, vmax] as in Eq. (10) to guarantee that the particles 
are confined to searching in forecasted space [24].
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FIG. 3. Schematic diagram of the experimental setup.

(a)

(b)

FIG. 4. (a) SMI signal. (b) Noise without feedback.

PSO has the ability to search global minima working on 
a population of potential solutions. However, this algorithm 
has the drawback of time complexity. In practical measure-
ments, the actual distance is unknown and we have to 
estimate the range of measurement. Because of this, there 
is large amount of calculation with searching into such a 
wide range.

In order to decrease the time consumed, we implemented 
a way to shrink the exploration range [15] before the implement 
of PSO to accelerate the speed of measurement. During 
the accelerating, the range of all points will be updated 
according to the performance of the last iteration of particles. 
The maximum and the minimum of a fraction of particles 
ranked in the front to get the best fitness function value 
will be selected to establish the new range. The particles 
that give the maximum and the minimum should also be 
added to the next iteration to avoid the neglect of the 
actual distance. Because of this, the range will be shrunk 
to a small range around the actual distance after several 
iterations of update. After the accelerating, the PSO can 
find out the global minima within several tens of iterations, 
which can significantly decrease the time consumed.

III. EXPERIMENTAL RESULTS

We implemented some experiments to confirm the validity 
of the PSO algorithm, and the experimental setup is 
exhibited in Fig. 3.

The VCSEL HVS6003-001 with an integrated photo-
transistor and a threshold current of 2 mA was utilized in 
the experiment. It emits a polarized beam with a central 
wavelength of 850 nm. The VCSEL is driven by a modulated 
sawtooth current with amplitude 1 mA and frequency 50 
Hz, biased at 7 mA. The current is generated by a digital 
to analogue output channel of NI’s DAQ card. 

SMI signal occurs when the laser beam is partially reflected 
by the diffusive target and mixed with the light inside the 
laser cavity. The SMI signal can be detected by the built-in 
phototransistor and transformed into light current and then 
into voltage signal by a sampling resistance. The voltage 

signal is digitized and sampled by a DAQ card with sampling 
rate of 100 kHz after the process of an amplifier and a 
band-pass filter. A PC running the PSO algorithm was utilized 
to process the samples. The parameters of the algorithm 
are exhibited as follows. A recommended choice for constant 
c1 and c2 is integer 2 since it on average makes the weights 
for “social” and “cognition” parts to be 1 [16]. The population 
size is 60; the maximum number of iterations is 20; the 
maximum velocity is set as 0.002; inertia weight w is 0.4. 
Each particle is initialized in the range from 1 cm to 25 
cm, which can be forecasted before the implementation of 
the algorithm. During the accelerating, 15 particles ranked 
in the front to get the best fitness function value are selected 
to establish the new range, and accelerating iteration is set 
to 5.

The SMI signal during a modulation period is shown in 
Fig. 4 (a), the corresponding noise without feedback is shown 
in Fig. 4 (b). The sinusoidal waveform in Fig. 4 (a) shows 
that the device works under weak feedback regime (C<1) 
[25]. After calculating the effective value, we can obtain 
the SNR of experimental data, which is about 30 dB. 

The target is fixed on a mechanical translator with 
precision 3 µm. A series of absolute distance measurements 
was made to acquire the resolution of the algorithm. The 
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FIG. 5. (a) Error and STD values by PSO. (b) Error and STD 
values by interpolated FFT.

FIG. 6. Theoretical calculation of function F(φF) versus 
parameter C.

target was moved 1 cm a step in the range from 3 cm to 
20 cm. The error and STD values evaluated from 30 samples 
by PSO are presented in Fig. 5 (a). To compare the performance 
of PSO with interpolated FFT based on spectrum estimation 
algorithm, we utilized the interpolated FFT to process the 
same experimental data. The error and STD values are 
presented in Fig. 5 (b).

A resolution better than 25 μm in the range from 3 to 
20 cm can be seen from Fig. 5 (a) to demonstrate the 
performance of PSO in processing of the SMI signal. In 
addition, the results from Fig. 5 illustrate that the PSO 
algorithm has superiority to interpolated FFT in resolution 
and stability. This result may be explained by the following 
reasons. Interpolated FFT suffers from inherent drawbacks 
such as spectrum leakage, which will influence the measure-
ment of beat frequency and degrade the accuracy of distance 
measurement. What is more, inapplicability in the condition 
with dense frequency spectrum will further worsen the 
measurement. Whereas, the PSO depends on the fitness 
function that is established from the self-mixing signal. For 
this matter, PSO is appropriate to realize high resolution 
and stability in the absolute distance estimation eschewing 
the difficulty in frequency analysis. 

However, PSO performs well at the expense of being 
time consuming. We processed the same data in MATLAB 
environment on the PC with dual-core 2.8 GHz CPU and 
2 GB RAM. The elapsed time of PSO is nearly 10 s while 
the elapsed time of interpolated FFT is less than 1 s due 
to the fast calculation algorithm. Because of the application 
of accelerating, the elapsed time of PSO has decreased 
from more than 80 s to nearly 10 s at the same resolution 
level. Further optimization should be investigated to accelerate 
the calculation. For example, a simpler fitness function 
will reduce the amount of calculations, and high seed 
devices such as FPGA have the potential ability to decrease 
the time consumed.

IV. DISCUSSION

4.1. Influence of External Feedback Strength Parameter C
A single solution for v in Eq. (1) is obtained in the case 

of weak feedback level corresponding to C less than 1, 
and the waveform shows that our experiment was conducted 
under this condition. The change of feedback strength 
parameter influences the SMI signal which contains the 
information of distance, and may influence the accuracy of 
measurement. It is necessary to assess the extent of the 
effect. However, the parameter C cannot be adjusted freely 
and quantitatively in experiment, some simulations on 
MATLAB were performed. Theoretical calculation of function 
F(φF) for different parameters is presented in Fig. 6.

For a very weak optical feedback level when C is equal 
to 0.1, the function F(φF) is nearly sinusoidal. With the 
increase of C, F(φF) exhibits a slight distortion. In order to 
evaluate the influence which the parameter C has on the 
PSO performance, some simulations were performed. The 
simulations deploy the same parameters as in the experiment. 
The parameter C changes linearly from 0.1 to 0.9 at a 
distance of 5 cm and the corresponding simulation error 
and STD values on the condition of SNR 30 dB are 
shown in Fig. 7. 
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FIG. 7. Simulation error and STD versus parameter C. FIG. 8. Number of failures versus inertia weight w.  

FIG. 9. Average number of iterations versus inertia weight w.

As we can see from Fig. 7, the change of parameter C 
in the weak feedback level has little influence on the 
results. In light of this, there is not much reason to regulate 
this parameter when the setup works in the case of weak 
feedback. The simulation results are better than experimental 
results in Fig. 5, as there are other sources of error that 
limit the resolution of this device. Firstly, a variation to 
the beat frequency occurs, since optical frequency is not 
strictly linear to the current modulation [26]. As a result, 
the resolution of distance measurement is limited. To 
improve the accuracy of our device, a reshaped modulation 
current may be needed to suppress the nonlinearity. Secondly, 
measurement resolution can also be affected by the 
fluctuations in temperature which may lead to instability of 
the laser frequency. The SMI signal will deviate from the 
ideal waveform and then the deviation can degrade the 
accuracy of the result. A temperature controller should be 
added to adjust the stability of temperature.

4.2. Parameter Selection of Inertia Weight w
The inertia weight w is important to balance global search 

ability and local search ability. A larger inertia weight tends 
to facilitate global exploration while a smaller one tends to 
facilitate local exploration. There is a tradeoff between the 
global and local search which requires fewer iterations on 
average to find the optimum [20]. Some simulations on 
MATLAB were performed to select the optimal parameter. 
These simulations were conducted without accelerating to 
eliminate the stochastic influence of it. The maximum 
number of iterations is 2000 and the parameter w changes 
from 0.1 to 1.5 at a distance of 5 cm. For each selected 
w, thirty runs are performed and the required iterations for 
finding the acceptable solution with an error less than 1μm 
are recorded. If the algorithm cannot find the acceptable 
solution within 2000 iterations, it is claimed that the 
algorithm fails to find the global optimum in this run. The 
number of failures versus inertia weights is shown in Fig. 8. 
It is easy to see most runs fail to find the acceptable solution 
when w is greater than 1, and the others perform well. 
The average number of iterations versus inertia weights 

when w is less than 1 is presented in Fig. 9. 
It is observed that there is no distinct difference in the 

number of iterations when w is less than 1 and the minimum 
occurs when w is equal to 0.4, thus we adopted this value 
in the experiment. The inertia weight also can be a positive 
linear or nonlinear function of time [27]. Further research 
has to be carried out to find the optimal function and 
suitable range of inertia weight.

V. CONCLUSION

In this paper, an approach of SMI based on particle 
swarm optimization for absolute distance estimation is 
proposed. The PSO algorithm with an inertia weight was 
utilized to find the optimal solution of the multimodal 
fitness function and then to estimate the actual distance 
value. Some experiments were implemented to demonstrate 
the validity of this algorithm and the superiority to 
interpolated FFT in process of SMI signal, and the 
absolute distance was estimated with a resolution superior 
to 25 μm in the range from 3 to 20 centimeters. Some 
simulations with different external feedback strength parameter 
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C were performed and the results show there is little 
difference on the condition of weak optical feedback level. 
An inertia weight (w=0.4) was adopted in the algorithm after 
the comparison of the number of iterations acquired to find 
the acceptable solution. Further investigation about simpler 
fitness functions and application of high speed devices is 
necessary to decrease the time consumed. Also, future 
analysis about nonlinearity in optical frequency with 
current tuning and parameters selection in the algorithm 
have the potential ability to improve the accuracy of SMI 
distance estimation.
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