DOI QR코드

DOI QR Code

등가정하중을 이용한 튜브 하이드로포밍 공정 최적설계에 관한 기초연구

Preliminary Study on Optimization of the Tube Hydroforming Process Using the Equivalent Static Loads

  • 투고 : 2014.09.01
  • 심사 : 2014.12.23
  • 발행 : 2015.03.01

초록

본 논문은 등가정하중을 이용하여 튜브 하이드로포밍 공정을 위한 최적설계를 제안한다. 튜브 하이드로포밍 공정의 최적설계는 유체의 압력과 축 방향 압입량에 대한 적절한 하중경로를 결정하고, 이를 통하여 성형해석 후 결함이 없는 원하는 형상의 제품을 얻는 것을 목적으로 한다. 그러나 기존의 등가정하중법은 하중을 설계변수로 고려하지 못한다. 또한 튜브 하이드로포밍 공정의 최적설계에서 고려하는 비선형 두께 응답을 고려하기 위한 최적화가 필요하다. 따라서 본 연구에서는 튜브 하이드로포밍 공정의 최적설계에 적합한 새로운 등가정하중을 제시한다. 또한 새로운 등가정하중을 이용한 최적설계 프로세스를 제시한다. 제시한 최적설계방법의 사용 가능성은 예제를 통하여 확인한다.

An optimization method for the tube hydroforming process is developed using the equivalent static loads method for non linear static response structural optimization (ESLSO). The aims of the tube hydroforming optimization are to determine the axial forces (axial feedings) and the internal pressures, and to obtain the desired shape without failures after hydroforming analysis. Therefore, the magnitude of the forces should be design variables in the optimization process. Also, some tube hydroforming optimization needs to consider the result of the thickness in nonlinear dynamic analysis as responses. However, the external forces are considered as constants and the thickness is not a response in the linear response optimization process of the original ESLSO. Thus, a new ESLSO process is proposed to overcome the difficulties and some examples are solved to validate the proposed method.

키워드

참고문헌

  1. Koc, M. and Altan, T., 2001, "An Overall Review of the Tube Hydroforming (THF) Technology," Journal of Materials Processing Technology, Vol. 108, pp. 384-393. https://doi.org/10.1016/S0924-0136(00)00830-X
  2. Chidanand, G., Mahesh, N. S. and Shamasundar, S., 2011, "Tube Hydro Forming Process Design for SUV Long Member Using Numerical Simulation Technique," SASTECH Journal, Vol. 10, No. 1, pp. 67-70.
  3. Kim, K. J., Kim, J. S., Choi, B. I., Kim, K. H., Choi, H. H., Kim, C. W., Kang, K. W., Song, J. H. and Sung, C. W., 2007, "Development of Automotive Engine Cradle by Hydroforming Process," Journal of Mechanical Science and Technology, Vol. 21, pp. 1523-1527. https://doi.org/10.1007/BF03177369
  4. Schmoeckel, D., Hielscher, C., Huber, R. and Geiger, M., 1999, "Metal Forming of Tubes and Sheets with Liquid and Other Flexible Media," CIRP annals, Vol.48, No.2, pp. 497-513. https://doi.org/10.1016/S0007-8506(07)63230-2
  5. Lang, L. H., Wang, Z. R., Kang, D. C., Yuan, S. J., Zhang, S. H., Danckert, J. and Nielsen, K. B., 2004, "Hydroforming Highlights: Sheet Hydroforming and Tube Hydroforming," Journal of Materials Processing Technology, Vol. 151, pp. 165-177. https://doi.org/10.1016/j.jmatprotec.2004.04.032
  6. Fann, K. J. and Hsiao, P. Y., 2003, "Optimization of Loading Conditions for Tube Hydroforming," Journal of Materials Processing Technology, Vol. 140, pp. 520-524. https://doi.org/10.1016/S0924-0136(03)00778-7
  7. Lorenzo, R. D., Ingarao, G. and Chinesta, F., 2009, "A Gradient-based Decomposition Approach to Optimize Pressure Path and Counterpunch Action in Y-shaped Tube Hydroforming Operation," The International Journal of Advanced Manufacturing Technology, Vol. 44, No.1-2, pp. 49-60. https://doi.org/10.1007/s00170-008-1813-x
  8. Abedrabbo, N., Worswick, M., Mayer, R. and Riemsdijk, I., 2009, "Optimization Methods for the Tube Hydroforming Process Applied to Advanced High-strength Steels with Experimental Verification," Journal of Materials processing Technology, Vol. 209, pp. 110-123. https://doi.org/10.1016/j.jmatprotec.2008.01.060
  9. Yong, Z., Chan, L. C., Chunguang, W. and Pei, W., 2009, "Optimization for Loading Paths of Tube Hydroforming Using a Hybrid Method," Materials and Manufacturing Processes, Vol. 24, No. 6, pp. 700-708. https://doi.org/10.1080/10426910902769392
  10. Li, B., Nye, T. J. and Metzger, D. R., 2006, "Multiobjective Optimization of Forming Parameters for Tube Hydroforming Process Based on the Taguchi Method," The International Journal of Advanced Manufacturing Technology, Vol. 38, No. 1-2, pp. 23-30.
  11. Jansson, M., Nilsson, L. and Simonsson, K., 2007, "On Process Parameter Estimation for the Tube Hydroforming Process," Journal of Materials Processing Technology, Vol. 190, No. 1-3, pp. 1-11. https://doi.org/10.1016/j.jmatprotec.2007.02.050
  12. Ingarao, G., Lorenzo, R. D. and Micari, F., 2009, "Internal Pressure and Counterpunch Action Design in Y-shaped Tube Hydroforming Processes: A Multiobjective Optimisation Approach," Computers and Structures, Vol. 87, No. 9-10, pp. 591-602. https://doi.org/10.1016/j.compstruc.2009.02.003
  13. Park, G. J., 2007, Analytical Methods for Design Practice, Springer, Berlin, 255-310.
  14. Choi, W. S. and Park, G. J., 2002, "Structural Optimization Using Equivalent Static Loads at All the Intervals," Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 12, pp. 2077-2094.
  15. Shin, M. K., Park, K. J. and Park, G. J., 2007, "Optimization of Structures with Nonlinear Behavior Using Equivalent Loads," Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 4, pp. 1154-1167. https://doi.org/10.1016/j.cma.2006.09.001
  16. Kim, Y. I. and Park, G. J., 2010, "Nonlinear Dynamic Response Structural Optimization Using Equivalent Static Loads," Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 9-12, pp. 660-676. https://doi.org/10.1016/j.cma.2009.10.014
  17. Jang, H. H., Jeong, J. B. and Park, G. J., 2012, "Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 11, pp. 1361-1370. https://doi.org/10.3795/KSME-A.2012.36.11.1361
  18. Lee, J. J. and Park, G. J., 2014, "Optimization of the Structural and Process Parameters in the Sheet Metal Forming Process," Journal of Mechanical Science and Technology, Vol. 28, No. 2, pp. 605-619. https://doi.org/10.1007/s12206-013-1125-4
  19. GENESIS User's Manual Version 12.1, 2011, Vanderplaats Research and Development Inc., Colorado, U.S.A.
  20. LS-DYNA User's Manual, 2013, Livermore Software Technology Co., Livermore, California, U.S.A.