DOI QR코드

DOI QR Code

AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid

  • Choi, S.H. (Department of Animal Science, Texas Agricultural Experiment Station, Texas A&M University) ;
  • Park, S.K. (Department of Food Science and Technology, Sejong University) ;
  • Johnson, B.J. (Department of Animal and Food Science, Texas Tech University) ;
  • Chung, K.Y. (Hanwoo Research Institute, National Institute of Animal Science, RDA) ;
  • Choi, C.W. (Department of Animal Resources, Daegu University) ;
  • Kim, K. H. (Graduate School of International Agricultural Technology, Seoul National University) ;
  • Kim, W.Y. (Department of Animal Science, Chungbuk National University) ;
  • Smith, S.B. (Department of Animal Science, Texas Agricultural Experiment Station, Texas A&M University)
  • Received : 2014.08.05
  • Accepted : 2014.10.09
  • Published : 2015.03.01

Abstract

We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco's Modified Eagle Medium (DMEM) and 1% antibiotics during the 3-d proliferation period. After proliferation, cells were treated for 3 d with 3% horse serum/DMEM (BSC) or 5% FBS/DMEM (IPA) with antibiotics. Media also contained $10{\mu}g/mL$ insulin and $10{\mu}g/mL$ pioglitazone. Subsequently, differentiating BSC and IPA were cultured in their respective media with $40{\mu}M$ palmitic, stearic, oleic, or linoleic acid for 4 d. Finally, BSC and IPA were single- or co-cultured for an additional 2 h. All fatty acid treatments increased (p = 0.001) carnitine palmitoyltransferase-1 beta ($CPT1{\beta}$) gene expression, but the increase in $CPT1{\beta}$ gene expression was especially pronounced in IPA incubated with palmitic and stearic acid (6- to 17-fold increases). Oleic and linoleic acid decreased (p = 0.001) stearoyl-CoA desaturase (SCD) gene expression over 80% in both BSC and IPA. Conversely, palmitic and stearic acid increased SCD gene expression three fold in co-cultured in IPA, and stearic acid increased $AMPK{\alpha}$ gene expression in single- and co-cultured BSC and IPA. Consistent with our hypothesis, saturated fatty acids, especially stearic acid, promoted adipogenic and lipogenic gene expression, whereas unsaturated fatty acids decreased expression of those genes associated with fatty acid metabolism.

Keywords

References

  1. Archibeque, S. L., D. K. Lunt, C. D. Gilbert, R. K. Tume, and S. B. Smith. 2005. Fatty acid indices of stearoyl-CoA desaturase do not reflect actual stearoyl-CoA desaturase enzyme activities in adipose tissues of beef steers finished with corn-, flaxseed-, or sorghum-based diets. J. Anim. Sci. 83:1153-1166.
  2. Baxa, T. J., J. P. Hutcheson, M. F. Miller, J. C. Brooks, W. T. Nichols, M. N. Streeter, D. A. Yates, and B. J. Johnson. 2010. Additive effects of a steroidal implant and zilpaterol hydrochloride on feedlot performance, carcass characteristics, and skeletal muscle messenger ribonucleic acid abundance in finishing steers. J. Anim. Sci. 88:330-337. https://doi.org/10.2527/jas.2009-1797
  3. Brooks, M. A., C. W. Choi, D. K. Lunt, H. Kawachi, and S. B. Smith. 2011. Subcutaneous and intramuscular adipose tissue stearoyl-coenzyme A desaturase gene expression and fatty acid composition in calf- and yearling-fed Angus steers. J. Anim. Sci. 89:2556-2570. https://doi.org/10.2527/jas.2010-3369
  4. Brown, A. J., S. M. Goldsworthy, A. A. Barnes, M. M. Eilert, L. Tcheang, D. Daniels, A. I. Muir, M. J. Wigglesworth, I. Kinghorn, N. J. Fraser, N. B. Pike, J. C. Strum, K. M. Steplewski, P. R. Murdock, J. C. Holder, F. H. Marshall, P. G. Szekeres, S. Wilson, D. M. Ignar, S. M, Foord, A. Wise, and S. J. Dowell. 2003. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278:11312-11319. https://doi.org/10.1074/jbc.M211609200
  5. Cameron, P. J., M. Rogers, J. Oman, S. G. May, D. K. Lunt, and S. B. Smith. 1994. Stearoyl coenzyme A desaturase enzyme activity and mRNA levels are not different in subcutaneous adipose tissue from Angus and American Wagyu steers. J. Anim. Sci. 72:2624-2628.
  6. Chang, J. H. P., D. K. Lunt, and S. B. Smith. 1992. Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. J. Nutr. 122:2074-2080.
  7. Choi, S. H., K. Y. Chung, B. J. Johnson, G. W. Go, K. H. Kim, C. W. Choi, and S. B. Smith. 2013a. Co-culture of bovine muscle satellite cells with preadipocytes increases PPAR${\gamma}$ and C/EBP B gene expression in differentiated myoblasts and increases GPR43 gene expression in adipocytes. J. Nutr. Biochem. 24:539-543. https://doi.org/10.1016/j.jnutbio.2012.01.015
  8. Choi, S. H., G. O. Gang, J. E. Sawyer, B. J. Johnson, K. H. Kim, C. W. Choi, and S. B. Smith. 2013b. Fatty acid biosynthesis and lipogenic enzyme activities in subcutaneous adipose tissue of feedlot steers fed supplementary palm oil or soybean oil. J. Anim. Sci. 91:2091-2098. https://doi.org/10.2527/jas.2012-5801
  9. Choi, S. H., D. T. Silvey, B. J. Johnson, M. E. Doumit, K. Y. Chung, J. E. Sawyer, G. W. Go, and S. B. Smith. 2014. Conjugated linoleic acid (t-10, c-12) reduces fatty acid synthesis de novo, but not expression of genes for lipid metabolism in bovine adipose tissue ex vivo. Lipids 49:15-24. https://doi.org/10.1007/s11745-013-3869-0
  10. Chung, K. Y., C. B. Choi, H. Kawachi, H. Yano, and S. B. Smith. 2006a. Trans-10, cis-12 conjugated linoleic acid antagonizes arginine-promoted differentiation of bovine preadipocytes. Adipocytes 2:93-100.
  11. Chung, K. Y. and B. J. Johnson. 2009. Melengestrol acetate enhances adipogenic gene expression in cultured musclederived cells. J. Anim. Sci. 87:3897-3904. https://doi.org/10.2527/jas.2008-1645
  12. Chung, K. Y., D. K. Lunt, C. B. Choi, S. H. Chae, R. D. Rhoades, T. H. Adams, B. Booren, and S. B. Smith. 2006b. Lipid characteristics of subcutaneous adipose tissue and M. longissimus thoracis of Angus and Wagyu steers fed to us and Japanese endpoints. Meat Sci. 73:432-441. https://doi.org/10.1016/j.meatsci.2006.01.002
  13. Darlington, G. J., S. E. Ross, and O. A. MacDougald. 1998. The role of C/EBP genes inadipocyte differentiation. J. Biol. Chem. 273:30057-30060. https://doi.org/10.1074/jbc.273.46.30057
  14. Ekeren, P. A., D. R. Smith, D. K. Lunt, and S. B. Smith. 1992. Ruminal biohydrogenation of fatty acids from high-oleate sunflower seeds. J. Anim. Sci. 70:2574-2580.
  15. Ge, H., X. Li, J. Weiszmann, P. Wang, H. Baibault, J. L. Chen, H. Tian, and Y. Li. 2008. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519-4526. https://doi.org/10.1210/en.2008-0059
  16. Hausman, G. J. and S. P. Poulos. 2005. A method to establish cocultures of myotubes and preadipocytes from collagenase digested neonatal pig semitendinosus muscles. J. Anim. Sci. 83:1010-1016.
  17. Hosseini, A., H. Sauerwein, and M. Mielenz. 2010. Putative reference genes for gene expression studies in propionate and ${\beta}$-hydroxybutyrate treated bovine adipose tissue explants. J. Anim. Physiol. Anim. Nutr. (Berlin). 94:e178-184. Doi: 10.1111/j.1439-0396.2010.01002.x. Epub.
  18. Janovick-Guretzky, N. A., H. M. Dann, D. B. Carlson, M. R. Murphy, J. J. Loor, and J. K. Drackley. 2007. Housekeeping gene expression in bovine liver is affected by physiological state, feed intake, and dietary treatment. J. Dairy Sci. 90:2246-2252. https://doi.org/10.3168/jds.2006-640
  19. Kadegowda, A. K. G., T. A. Burns, S. L. Pratt, and S. K. Duckett. 2013. Inhibition of stearoyl-CoA desaturase 1 reduces lipogenesis in primary bovine adipocytes. Lipids 48:967-976. https://doi.org/10.1007/s11745-013-3823-1
  20. Kang, K., W. Liu, K. J. Albright, Y. Park, and M. W. Pariza. 2003. trans-10,cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPAR${\gamma}$ expression. Biochem. Biophys. Res. Commun. 303:795-799. https://doi.org/10.1016/S0006-291X(03)00413-3
  21. Kim, E., J. H. Lee, J. M. Ntambi, and C. K. Hyun. 2011. Inhibition of stearoyl-CoA desaturase1 activates AMPK and exhibits beneficial lipid metabolic effects in vitro. Eur. J. Pharmacol. 672:38-44. https://doi.org/10.1016/j.ejphar.2011.09.172
  22. Kimura, I., K. Ozawa, D. Inoue, T. Imamura, K. Kimura, T. Maeda, K. Terasawa, D. Kashihara, K. Hirano, T. Tani, T. Takahashi, S. Miyauchi, G. Shioi, H. Inoue, and G. Tsujimoto. 2013. The gut microbiota suppresses insulin-mediate fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4:1829. https://doi.org/10.1038/ncomms2852
  23. Martin, G. S., D. K. Lunt, K. G. Britain, and S. B. Smith. 1999. Postnatal development of stearoyl coenzyme A desaturase gene expression and adiposity in bovine subcutaneous adipose tissue. J. Anim. Sci. 77:630-636.
  24. Ohyama, M., K. Matsuda, S. Torii, T. Matsui, H. Yano, T. Kawada, and T. Ishihara. 1998. The interaction between vitamin A and thiazolidinedione on bovine adipocyte differentiation in primary culture. J. Anim. Sci. 76:61-65.
  25. Ouellette, S. E., J. Li, W. Sun, W. Tsuda, D. K. Walker, M. J. Hersom, and S. E. Johnson. 2009. Leucine/glutamic acid/lysine protein 1 is localized to subsets of myonuclei in bovine muscle fibers and satellite cells. J. Anim. Sci. 87:3134-3141. https://doi.org/10.2527/jas.2009-1998
  26. Park, S. K., K. H. Baek, and C. B. Choi. 2013. Suppression of adipogenic differentiation by muscle cell-induced decrease in genes related to lipogenesis in muscle and fat co-culture system. Cell Biol. Int. 37:1003-1009. https://doi.org/10.1002/cbin.10150
  27. Saladin, R., L. Fajas, S. Dana, Y. D. Halvorsen, J. Auwerx, and M. Briggs. 1999. Differential regulation of peroxisome proliferator activated receptor ${\gamma}1$ (PPAR${\gamma}1$) and PPAR${\gamma}2$ messenger RNA expression in the early stages of adipogenesis. Cell Growth Differ. 10:43-48.
  28. Satory, D. L. and S. B. Smith. 1999. Conjugated linoleic acid inhibits proliferation but stimulates lipid filling of murine 3T3-L1 preadipocytes. J. Nutr. 129:92-97.
  29. Sessler, A. M., N. Kaur, J. P. Palta, and J. M. Ntambi. 1996. Regulation of stearoyl-CoA desaturase 1 mRNA stability by polyunsaturated fatty acids in 3T3-L1 adipocytes. J. Biol. Chem. 271:29854-29858. https://doi.org/10.1074/jbc.271.47.29854
  30. Smith, S. B., G. W. Go, B. J. Johnson, K. Y. Chung, S. H. Choi, J. E. Sawyer, D. T. Silvey, L. A. Gilmore, G. Ghahramany, and K. H. Kim. 2012. Adipogenic gene expression and fatty acid composition in subcutaneous adipose tissue depots of Angus steers between 9 and 16 months of age. J. Anim. Sci. 90:2505-2514. https://doi.org/10.2527/jas.2011-4602
  31. St. John, L. C., D. K. Lunt, and S. B. Smith. 1991. Fatty acid elongation and desaturation enzyme activities of bovine liver and subcutaneous adipose tissue microsomes. J Anim Sci 69:1064-1073.
  32. Suryawan, A. and C. Y. Hu.1997. Effect of retinoic acid on differentiation of cultured pig preadipocytes. J. Anim. Sci. 75:112-117.
  33. Wan, Z., J. Root-McCaig, L. Castellani, B. E. Kemp, G. R. Steinberg, and D. C. Wright. 2014. Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue. Obesity (Silver Spring) 22:730-738. https://doi.org/10.1002/oby.20605
  34. Wu, Z., N. L. R. Bucher, and S. F. Farmer. 1996. Induction of peroxisome proliferator-activated receptor ${\gamma}$ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBP${\beta}$, C/EBP${\delta}$, and glucocorticoids. Mol. Cell. Biol. 16:4128-4136. https://doi.org/10.1128/MCB.16.8.4128
  35. Yin, W., J. Mu, and M. J. Birnbaum. 2003. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes. J. Biol. Chem.278:43074-43080. https://doi.org/10.1074/jbc.M308484200

Cited by

  1. - Invited Review - Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants vol.29, pp.1, 2015, https://doi.org/10.5713/ajas.16.0001R
  2. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil vol.29, pp.3, 2016, https://doi.org/10.5713/ajas.15.0011
  3. Oleic acid enhances G protein coupled receptor 43 expression in bovine intramuscular adipocytes but not in subcutaneous adipocytes1 vol.94, pp.5, 2016, https://doi.org/10.2527/jas.2015-0010
  4. Dietary linseed oil with or without malate increases conjugated linoleic acid and oleic acid in milk fat and lipoprotein lipase and stearoyl-coenzyme A desaturase gene expression in mammary gland and milk somatic cells of lactating goats vol.94, pp.8, 2016, https://doi.org/10.2527/jas.2016-0291
  5. Effects of full-fat soybean diet on performance, carcass characteristics,and fatty acid composition of Hanwoo steers vol.40, pp.13036181, 2016, https://doi.org/10.3906/vet-1508-12
  6. Dietary whole and cracked linseed increases the proportion of oleic and α-linolenic acids in adipose tissues and decreases stearoyl-coenzyme A desaturase, acetyl-coenzyme A carboxylase, and fatty acid synthase gene expression in the longissimus thoracis muscle of Yanbian Yellow cattle vol.95, pp.2, 2017, https://doi.org/10.2527/jas.2016.1050
  7. Review: Nutrigenomics of marbling and fatty acid profile in ruminant meat pp.1751-732X, 2018, https://doi.org/10.1017/S1751731118001933
  8. Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil vol.37, pp.2, 2015, https://doi.org/10.5851/kosfa.2017.37.1.168
  9. Adipogenic/lipogenic gene expression and fatty acid composition in chuck, loin, and round muscles in response to grain feeding of Yanbian Yellow cattle vol.96, pp.7, 2018, https://doi.org/10.1093/jas/sky161
  10. TRIENNIAL GROWTH SYMPOSIUM: THE NUTRITION OF MUSCLE GROWTH: Impacts of nutrition on the proliferation and differentiation of satellite cells in livestock species1,2 vol.97, pp.5, 2015, https://doi.org/10.1093/jas/skz081
  11. Calcium salts of fatty acids with varying fatty acid profiles in diets of feedlot-finishedBos indicusbulls: impacts on intake, digestibility, performance, and carcass and meat characteristics vol.98, pp.12, 2015, https://doi.org/10.1093/jas/skaa382
  12. Effect of palmitoleic acid on the differentiation of bovine skeletal muscle satellite cells vol.63, pp.4, 2015, https://doi.org/10.5187/jast.2021.e78
  13. Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells vol.63, pp.4, 2015, https://doi.org/10.5187/jast.2021.e87
  14. When Two plus Two Is More than Four: Evidence for a Synergistic Effect of Fatty Acids on Peroxisome Proliferator-Activated Receptor Activity in a Bovine Hepatic Model vol.12, pp.8, 2021, https://doi.org/10.3390/genes12081283
  15. Effects of the association between whole cottonseed and calcium salts of fatty acids on nutrient intake, feedlot performance, and carcass characteristics of Bos indicus animals offered a high-concentr vol.5, pp.4, 2015, https://doi.org/10.1093/tas/txab207
  16. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms vol.912, pp.None, 2021, https://doi.org/10.1016/j.ejphar.2021.174604
  17. Main regulatory factors of marbling level in beef cattle vol.14, pp.None, 2015, https://doi.org/10.1016/j.vas.2021.100219