DOI QR코드

DOI QR Code

천연가스 유량변화에 따른 터보팽창기 감압시스템 운전 최적화에 관한 연구

A Study on the Operational Optimization of Turbo-Expander Pressure Reduction System to the Natural Gas Flow Rates

  • 유한빛 (서울시립대학교 화학공학과) ;
  • 김효 (서울시립대학교 화학공학과)
  • Yoo, Han Bit (Dept. of Chemical Engineering, University of Seoul) ;
  • Kim, Hyo (Dept. of Chemical Engineering, University of Seoul)
  • 투고 : 2015.09.23
  • 심사 : 2015.12.24
  • 발행 : 2015.12.31

초록

천연가스 감압기지에 터보팽창기 감압시스템을 도입하여 천연가스의 감압과정에서 전기에너지를 생산할 수 있다. 터보팽창기의 효율은 천연가스의 유량과 터보팽창기 설계유량의 비에 따라 달라진다. 따라서 터보팽창기로 들어가는 유량을 조절함으로써 감압시스템을 운전하기 위한 최적조건을 결정할 수 있다. 본 연구에서는 두 곳의 저압 정압기지에서 천연가스의 압력이 17.5 bar에서 8.5 bar로 감압될 때 천연가스의 유량에 따라 생산 가능한 전력을 계산하고 계산결과의 비교를 통해 터보팽창기 감압시스템이 최적으로 운전되기 위한 조건을 찾았다. 천연가스의 평균 유량이 크고 유량의 변화가 작을 때 터보팽창기가 효율적으로 운전되었고 터보팽창기의 설계유량은 천연가스의 유량을 가장 많이 포함하는 용량에서 결정되었다. 선정된 두 정압기지에서 회수 가능한 전력생산량은 9 MW(B 기지), 12 MW(D 기지)로 추산되었다.

Electricity can be generated when the natural gas passes through a turbo-expander pressure reduction system at natural gas pressure reduction stations. Efficiency of the turbo-expander depends on the ratio of the natural gas flow rates to the design flow rate of the turbo-expander. Therefore, the optimal conditions for the operation of the pressure reduction system can be determined by controlling the natural gas flow rates. In this study, we have calculated the electric energy generation depending on the natural gas flow rates at the two low-pressure reduction stations when the pressure of the natural gas is reduced from 17.5 bar to 8.5 bar and have found the optimal conditions for the turbo-expander pressure reduction system through the comparison with the calculation results. The turbo-expander generates the electric power efficiently for the high natural gas flow rates which variations are slight. The determined design flow rate of the turbo-expander has the highest coverage of the natural gas flow rates. The electricity generation is calculated as much as 9 MW(B station) and 12 MW(D station) at each pressure reduction station.

키워드

참고문헌

  1. Mirandola, A., and Minca, L., "Energy Recovery by Expansion of High Pressure Natural gas", Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, 1, 16-21, (1986).
  2. Hedman, B. A., "Waste energy recovery opportunities for interstate natural gas pipelines", Interstate Natural Gas Association of America, (2008).
  3. Howard, C., Oosthuizen, P., and Peppley, B., "An investigation of the performance of a hybrid turboexpander fuel cell system for power recovery at natural gas pressure reduction stations", Applied Thermal Engineering, 31(13), 2165-2170, (2011). https://doi.org/10.1016/j.applthermaleng.2011.04.023
  4. Rahman, M. M., "Power generation from pressure reduction in the natural gas supply chain in Bangladesh", Journal of Mechanical Engineering, 41(2), 89-95, (2010).
  5. Ardali, E. K., and Heybatian, E., "Energy Regeneration in Natural Gas Pressure Reduction Stations by Use of Gas Turbo Expander; Evaluation of Available Potential in Iran", Proceedings 24th world gas conference, 5-9, (2009).
  6. Yoo, H. B., Kim, H., "Feasibility Study of Pressure Letdown Energy Recovery from the Natural Gas Pressure Reduction Stations in South Korea", KIGAS, Vol 19, No3, 9-17, (2015).
  7. Bloch, H. P., Soares, C., "Turboexpanders and Process Applications", Gulf Professional Publishing, MA,(2001)
  8. Yoo, H. B., Kim, H., "Electricity Generation by Using Turbo-Expander in Natural Gas Pressure Reduction Stations in Republic of Korea", Proceeding of the Annual Fall Meeting of KICHE 2014, 273, (2014)
  9. Maric, I., "The Joule-Thomson effect in natural gas flow-rate measurements", Flow Measurement and Instrumentation, 16, 387-395, (2005). https://doi.org/10.1016/j.flowmeasinst.2005.04.006
  10. Peng, D. Y., and Robinson, D. B., "A New Two-Constant Equation of State", Ind. Eng. Chem. Fundamen., 15(1), 59-64, (1976). https://doi.org/10.1021/i160057a011
  11. Smith, J. M., Van Ness, H. C., Abbott, M. M., Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw-Hill, New York, (2005).