DOI QR코드

DOI QR Code

Dependence of Explosion Overpressure of Flammable Gas on the Change of Volume Blockage Ratio of Facilities

설비 혼잡도에 따른 가연성 증기운의 폭발과압의 변화

  • Lee, Seung Kuk (Graduate School, Dept. of Gas Energy Plant Engineering, Chung-Ang University) ;
  • Lee, Da Eun (Graduate School, Chung-Ang University) ;
  • Kim, Sung Chan (Dept. of Fire Safety, Kyung-Il University) ;
  • Yoon, Kee Bong (Dept. of Mechanical Engineering, Chung-Ang University)
  • 이승국 (중앙대학교 대학원 가스.에너지플랜트공학과) ;
  • 이다은 (중앙대학교 대학원 기계공학과) ;
  • 김성찬 (경일대학교 소방방재학과) ;
  • 윤기봉 (중앙대학교 기계공학부)
  • Received : 2015.11.03
  • Accepted : 2015.12.08
  • Published : 2015.12.31

Abstract

A series of CFD calculation has been conducted to investigate the effect of facility confinement on explosion power for process plant facility. The level of confinement of a facility was simplified with VBR(volume blockage ratio) and averaged size of obstacles. FLACS which is 3D CFD code of gas dispersion and the explosion was used for simulating the explosion phenomena in the idealized domain with different confinement level. The CFD results showed a tendency that the overpressure increases with increasing VBR and number of obstacles. The effect of VBR on the overpressure was relatively small for the case of number of obstacle less than 25. The results of this study can be used to provide a safety guideline considering the facility confinement in case of leakage accident of flammable gas and vapor in process plants.

본 연구에서는 공정 플랜트시설의 설비 밀집정도에 따른 폭발크기의 경향을 파악하기 위해 CFD 해석을 수행하였다. 설비의 밀집정도는 VBR(Volume Blockage Ratio)과 장애물의 평균크기로 단순화하였다. 밀집정도에 따른 이상적인 형태의 공간에 대해 폭발전용해석 코드인 FLACS를 이용하여 폭발의 특성을 파악하였다. 해석결과 VBR과 장애물의 수가 증가할수록 폭발압력은 증가하는 경향을 보였다. 장애물의 개수가 25개 이하에서는 VBR의 영향은 크지 않았다. 본 연구의 결과 공정에서 가연성 가스 누출 사고시 설비혼잡도를 고려한 피해저감 설계의 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. Van Den Bosch, C. J. H., Weterings, R. A. P. M., Methods for the Calculation of Physical Effects, Report, TNO CPR14E, (1996)
  2. GexCon, "On the use of simulation results obtained with the CFD code FLACS for optimizing safety gaps between repeated congested regions." CMR, (2014)
  3. Van Den Berg, A. C., Mos, A. L., Research to Improve Guidance on Separation Distance for the Multi-nergy Methos(RIGOS), TNO Prins Maurits Laboratory, Nryhrlsnfd, (2005)
  4. Hansen, O. R., Hinze, P., Engel, D. & Davis, S., "Using Computational Fluid Dynamics(CFD) for Blast Wave Predictions", Journal of Loss Prevention in the Process Industries, 23:885-906, (2012)
  5. Dan, S. G., Kim, T. Y., Shin, D. I., "Consequence Analysis of Hydrogen Blended Natural Gas (HCNG) using 3D CFD Simulation", KIGAS, 5, 206-209, (2010)
  6. Dan, S. G., Park, K. J., Kim, T. O., Shin, D. I., "Explosion Simulation for Quantitative Risk Assessment of New Energy Filling Station", KIGAS, 15, 60-67, (2011)
  7. Jang, C. B., Lee, H. J., Lee, M. H., Min, D. C., Go, J. W., Kwon, H. M., "A Dispersion and Explosion Simulati-on of Flammable Gas Using CFD", KIGAS, 16(5), 58-64, (2012)
  8. Kang, S. K., Bang, H. J., Jo, Y. D., "Consequence Analysis of Hydrogen Blended Natural Gas (HCNG) using 3D CFD Simulation", KIGAS, 17(5), 15-21, (2013)
  9. Kim, S. J., Seo, S. K., Paik, J. K., and Czujko, J., "The Effects of Congestion and Confinement on the Gas Explosion Loads", KSCFE, 11, 68-73, (2014)
  10. Kwak, M. C., Yeo, J. I., A Flame Acceleration Modeling for Complicated Mixture of Flammable Gas, KSAM Book B ,36(3), 315-324, (2012)
  11. Jo, S. W., Kwak, S. Y., Lee, S. I., "A study of External Explosion Simulation and Safety Analysis for Explosion Proof Transformer Room", CAD/CAM 674-681, (2012)
  12. Seok, J., Jong, S. M., Park, J. C., Beak, J. G., "CFD Simulation of Methane Combustion for Prediction of Fire and Explosion in the Offsite Plant", KSOCEAN, 27(2), 59-68, (2013)
  13. Bjerketvedt, D., Bakke, J. R. & Van Wingerden, K., Gas Explosion Handbook, Report, Christian Michelsen Research, CMR-93-A25034, Bergen, Norway
  14. Gexcon, FLACS v10.3 User's Manual Technical Reference, Norway, CMR, (2015)