References
- Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark," In CVPR, pp. 2411-2418, 2013.
- A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, "Visual tracking: An experimental survey," TPAMI, Vol. 36, No. 7, pp.1442-1468, 2014. https://doi.org/10.1109/TPAMI.2013.230
- M. Kristan and R. Pflugfelder et al. "The visual object tracking VOT2014 challenge results," In ECCV Workshop, pp.1-27, 2014.
- H. Yang, L. Shao, F. Zheng, L. Wang, and Z. Song, "Recent advances and trends in visual tracking: A review," Neurocomputing, Vol. 74, No. 18, pp. 3823-3831, 2011. https://doi.org/10.1016/j.neucom.2011.07.024
- X. Li,W. Hu, C. Shen, Z. Zhang, A. Dick, and A. V. D. Hengel, "A survey of appearance models in visual object tracking," TIST, Vol. 4, No. 4, pp. 58, 2013.
- D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, "Incremental learning for robust visual tracking," IJCV, Vol. 77(1-3), pp. 125-141, 2008. https://doi.org/10.1007/s11263-007-0075-7
- X. Mei and H. Ling, "Robust visual tracking and vehicle classification via sparse representation," TPAMI, Vol. 33, No. 11, pp. 2259- 2272, 2011. https://doi.org/10.1109/TPAMI.2011.66
- Z. Hong, X. Mei, D. Prokhorov, and D. Tao, "Tracking via robust multi-task multi-view joint sparse representation," In ICCV, pp. 649-656, 2013.
- T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, "Robust visual tracking via multi-task sparse learning," In CVPR, pp. 2042-2049, 2012.
- D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, "Incremental learning for robust visual tracking," IJCV, Vol. 77(1-3), pp. 125-141, 2008. https://doi.org/10.1007/s11263-007-0075-7
- G. Nebehay and R. Pflugfelder, "Consensus-based matching and tracking of keypoints for object tracking," In WACV, pp. 862-869, 2014.
- S. Avidan, "Support vector tracking," TPAMI, Vol. 26(8), pp. 1064-1072, 2004. https://doi.org/10.1109/TPAMI.2004.53
- S. Avidan, "Ensemble tracking," TPAMI, Vol. 29(2), pp. 261-271, 2007. https://doi.org/10.1109/TPAMI.2007.35
- B. Babenko, M.-H. Yang, and S. Belongie, "Robust object tracking with online multiple instance learning," TPAMI, Vol. 33(8), pp. 1619-1632, 2011. https://doi.org/10.1109/TPAMI.2010.226
- S. Hare, A. Saffari, and P. H. Torr, "Struck: Structured output tracking with kernels," In ICCV, pp. 263-270, 2011.
- J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, "Exploiting the circulant structure of tracking-by-detection with kernels," In ECCV, pp. 702-715. 2012.
- Z. Hong, X. Mei, and D. Tao, "Dual-force metric learning for robust distracter-resistant tracker," In ECCV, pp. 513-527, 2012.
- Y. Pang and H. Ling, "Finding the best from the second bestsinhibiting subjective bias in evaluation of visual tracking algorithms," In ICCV, pp. 2784-2791, 2013.
- Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark," In CVPR, pp. 2411-2418, 2013.
- D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, "Visual object tracking using adaptive correlation filters," In CVPR, pp. 2544-2550, 2010.
- M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg, "Accurate scale estimation for robust visual tracking," In BMVC, 2014.
- M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer, "Adaptive color attributes for real-time visual tracking," In CVPR, pp. 1090-1097, 2014.
- J. Henriques, R. Caseiro, P. Martins, and J. Batista, "Highspeed tracking with kernelized correlation filters," TPAMI, pp. 583-596, 2015.
- Y. Li and J. Zhu, "A scale adaptive kernel correlation filter tracker with feature integration," In ECCV Workshop, 2014.
- J. Wu, G. Li, and F. Ma, "Research on target tracking algorithm using improved current statistical model," International Conference on Electrical and Control Engineering, pp. 2515-2517, 2011.
- C. Huang, P. Feng, L. Cao, H. Huang, and H. Cheng, "A target tracking algorithm based on current statistical model for adjusting acceleration variance of maneuver target," Journal of Northwestern Polytechnical University, 2014.
- Q. Li, L. Kong, and X. Yang, "The knowledge-based tracking using geographic information," IEEE Conference on Radar, pp. 777-780, 2011.
- A. Mazinan, A. Amir, and M. Kazemi, "A knowledge-based objects tracking algorithm in color video using Kalman filter approach," IEEE Conference on Information Retrieval and Knowledge Management, 2012.
- I. Barkana, "On adaptive model tracking with mitigated passivity conditions," Israel Annual Conference on Aerospace Sciences, pp. 512-541, 2012.
- J. Hou, X Li, and Z. Jing, "Multiple model tracking of manoeuvring targets accounting for standoff jamming information," IET Radar, Sonar and Navigation, Vol. 7, No. 4, pp. 342-350, 2013. https://doi.org/10.1049/iet-rsn.2012.0279
- W. Kazimierski and A. Stateczny, "Optimization of multiple model neural tracking filter for marine targets," International Radar Symposium, pp. 543-548, 2012.
- H. Wang, B. Chen, X. Liu, K. Liu, and C. Lin, "Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation," Information Sciences, Vol. 269, pp. 300-315, 2014. https://doi.org/10.1016/j.ins.2013.09.043
- S. Avidan, "Ensemble tracking," IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), pp. 261-271, Feb. 2007. https://doi.org/10.1109/TPAMI.2007.35
- B. Babenko, Ming-Hsuan Yang, and S. Belongie, "Visual tracking with online multiple instance learning," In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), pp. 983-990, IEEE, June 2009.
- R. Brunelli, Template Matching Techniques in Computer Vision: Theory and Practice, Wiley Publishing, 2009.
- Z. Kalal, J. Matas, and K. Mikolajczyk, "Online learning of robust object detectors during unstable tracking," In Proceedings of the IEEE On-line Learning for Computer Vision Workshop, pp. 1417-1424, 2009.
- Z. Kalal, J. Matas, and K. Mikolajczyk, "P-N learning: Bootstrapping binary classifiers by structural constraints," In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 49-56, IEEE, June 2010.
- Z. Kalal, K. Mikolajczyk, and J. Matas, "Forward-Backward Error: Automatic Detection of Tracking Failures," In International Conference on Pattern Recognition, pp. 23-26, 2010.