DOI QR코드

DOI QR Code

In vitro study of fracture strength of provisional crown materials

  • Karaokutan, Isil (Department of Prosthodontics, Faculty of Dentistry, Selcuk University) ;
  • Sayin, Gulsum (Department of Prosthodontics, Faculty of Dentistry, Medipol University) ;
  • Kara, Ozlem (Department of Prosthodontics, Faculty of Dentistry, Bezmialem Vakif University)
  • Received : 2014.05.20
  • Accepted : 2014.09.30
  • Published : 2015.02.27

Abstract

PURPOSE. The purpose of this report was to evaluate the effect of the fabrication method and material type on the fracture strength of provisional crowns. MATERIALS AND METHODS. A master model with one crown (maxillary left second premolar) was manufactured from Cr-Co alloy. The master model was scanned, and the data set was transferred to a CAD/CAM unit (Yenamak D50, Yenadent Ltd, Istanbul, Turkey) for the Cercon Base group. For the other groups, temporary crowns were produced by direct fabrication methods (Imident, Temdent, Structur Premium, Takilon, Systemp c&b II, and Acrytemp). The specimens were subjected to water storage at $37^{\circ}C$ for 24 hours, and then they were thermocycled (TC, $5000{\times}$, $5-55^{\circ}C$) (n=10). The maximum force at fracture (Fmax) was measured in a universal test machine at 1 mm/min. Data was analyzed by non-parametric statistics (${\alpha}$=.05). RESULTS. Fmax values varied between 711.09-1392.1 N. In the PMMA groups, Takilon showed the lowest values (711.09 N), and Cercon Base showed the highest values (959.59 N). In the composite groups, Structur Premium showed the highest values (1392.1 N), and Acrytemp showed the lowest values (910.05 N). The composite groups showed significantly higher values than the PMMA groups (P=.01). CONCLUSION. Composite-based materials showed significantly higher fracture strengths than PMMA-based materials. The CADCAM technique offers more advantages than the direct technique.

Keywords

References

  1. Shillingburg HT, Sumiya H, Lowell DW, Jacobi R, Brackett SE. Fundamentals of fixed prosthodontics. 3. Auflage. Chicago: Quintessence; 1997.
  2. Burns DR, Beck DA, Nelson SK; Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 2003;90: 474-97. https://doi.org/10.1016/S0022-3913(03)00259-2
  3. Gough M. A review of temporary crowns and bridges. Dent Update 1994;21:203-7.
  4. Anusavice KJ. Phillips' science of dental materials. 10th ed. Philadelphia; WB Saunders; 1996; p. 285-431.
  5. Gegauff AG, Holloway JA, Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 3rd ed. Mosby, St. Louis; 2001; p. 380-416.
  6. Kim SH, Watts DC. In vitro study of edge-strength of provisional polymer-based crown and fixed partial denture materials. Dent Mater 2007;23:1570-3. https://doi.org/10.1016/j.dental.2007.06.023
  7. Burke FJ, Murray MC, Shortall AC. Trends in indirect dentistry: 6. Provisional restorations, more than just a temporary. Dent Update 2005;32:443-4, 447-8, 450-2. https://doi.org/10.12968/denu.2005.32.8.443
  8. Rosentritt M, Behr M, Lang R, Handel G. Flexural properties of prosthetic provisional polymers. Eur J Prosthodont Restor Dent 2004;12:75-9.
  9. Koumjian JH, Nimmo A. Evaluation of fracture resistance of resins used for provisional restorations. J Prosthet Dent 1990;64:654-7. https://doi.org/10.1016/0022-3913(90)90290-S
  10. Young HM, Smith CT, Morton D. Comparative in vitro evaluation of two provisional restorative materials. J Prosthet Dent 2001;85:129-32. https://doi.org/10.1067/mpr.2001.112797
  11. Diaz-Arnold AM, Dunne JT, Jones AH. Microhardness of provisional fixed prosthodontic materials. J Prosthet Dent 1999;82:525-8. https://doi.org/10.1016/S0022-3913(99)70050-8
  12. Ireland MF, Dixon DL, Breeding LC, Ramp MH. In vitro mechanical property comparison of four resins used for fabrication of provisional fixed restorations. J Prosthet Dent 1998;80:158-62. https://doi.org/10.1016/S0022-3913(98)70104-0
  13. Osman YI, Owen CP. Flexural strength of provisional restorative materials. J Prosthet Dent 1993;70:94-6. https://doi.org/10.1016/0022-3913(93)90038-P
  14. Wang RL, Moore BK, Goodacre CJ, Swartz ML, Andres CJ. A comparison of resins for fabricating provisional fixed restorations. Int J Prosthodont 1989;2:173-84.
  15. Balkenhol M, Ferger P, Mautner MC, Wostmann B. Provisional crown and fixed partial denture materials: mechanical properties and degree of conversion. Dent Mater 2007;23:1574-83. https://doi.org/10.1016/j.dental.2007.06.024
  16. McLean JW. The failed restoration: causes of failure and how to prevent them. Int Dent J 1990;40:354-8.
  17. Balkenhol M, Knapp M, Ferger P, Heun U, Wostmann B. Correlation between polymerization shrinkage and marginal fit of temporary crowns. Dent Mater 2008;24:1575-84. https://doi.org/10.1016/j.dental.2008.07.001
  18. Gougaloff R, Stalley FC. Immediate placement and provisionalization of a dental implant utilizing the CEREC 3 CAD/CAM Protocol: a clinical case report. J Calif Dent Assoc 2010;38:170-3, 176-7.
  19. Poticny DJ, Klim J. CAD/CAM in-office technology: innovations after 25 years for predictable, esthetic outcomes. J Am Dent Assoc 2010;141:5S-9S. https://doi.org/10.14219/jada.archive.2010.0356
  20. Ozcan M, Nijhuis H, Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J 2008;27:99-104. https://doi.org/10.4012/dmj.27.99
  21. Pisani-Proenca J, Erhardt MC, Valandro LF, Gutierrez- Aceves G, Bolanos-Carmona MV, Del Castillo-Salmeron R, Bottino MA. Influence of ceramic surface conditioning and resin cements on microtensile bond strength to a glass ceramic. J Prosthet Dent 2006;96:412-7. https://doi.org/10.1016/j.prosdent.2006.09.023
  22. Alt V, Hannig M, Wostmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater 2011;27: 339-47. https://doi.org/10.1016/j.dental.2010.11.012
  23. Balkenhol M, Meyer M, Michel K, Ferger P, Wostmann B. Effect of surface condition and storage time on the repairability of temporary crown and fixed partial denture materials. J Dent 2008;36:861-72. https://doi.org/10.1016/j.jdent.2008.06.006
  24. Balkenhol M, Mautner MC, Ferger P, Wostmann B. Mechanical properties of provisional crown and bridge materials: chemical-curing versus dual-curing systems. J Dent 2008;36: 15-20.
  25. Kerby RE, Knobloch LA, Sharples S, Peregrina A. Mechanical properties of urethane and bis-acryl interim resin materials. J Prosthet Dent 2013;110:21-8. https://doi.org/10.1016/S0022-3913(13)60334-0
  26. Knobloch LA, Kerby RE, Pulido T, Johnston WM. Relative fracture toughness of bis-acryl interim resin materials. J Prosthet Dent 2011;106:118-25. https://doi.org/10.1016/S0022-3913(11)60106-6
  27. Cheng CJ, Lin CL, Shan YF. Multifactorial analysis of variables influencing the fracture strength of repair joints for provisional restorative materials using the statistically based Taguchi method. J Dent Sci 2010;5:90-9. https://doi.org/10.1016/S1991-7902(10)60013-X
  28. Nejatidanesh F, Momeni G, Savabi O. Flexural strength of interim resin materials for fixed prosthodontics. J Prosthodont 2009;18:507-11. https://doi.org/10.1111/j.1532-849X.2009.00473.x
  29. Lang R, Rosentritt M, Behr M, Handel G. Fracture resistance of PMMA and resin matrix composite-based interim FPD materials. Int J Prosthodont 2003;16:381-4.
  30. Pihut M, Wisniewska G, Majewski P, Gronkiewicz K, Majewski S. Measurement of occlusal forces in the therapy of functional disorders with the use of botulinum toxin type A. J Physiol Pharmacol 2009;60:113-6.
  31. Tortopidis D, Lyons MF, Baxendale RH, Gilmour WH. The variability of bite force measurement between sessions, in different positions within the dental arch. J Oral Rehabil 1998;25:681-6. https://doi.org/10.1046/j.1365-2842.1998.00293.x

Cited by

  1. Fracture Resistance of Molar Crowns Fabricated with Monolithic All-Ceramic CAD/CAM Materials Cemented on Titanium Abutments: An In Vitro Study vol.26, pp.4, 2015, https://doi.org/10.1111/jopr.12393
  2. Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers pp.1059941X, 2019, https://doi.org/10.1111/jopr.12755
  3. Accuracy of provisional crowns made using stereolithography apparatus and subtractive technique vol.10, pp.5, 2018, https://doi.org/10.4047/jap.2018.10.5.354
  4. Comparison between direct chairside and digitally fabricated temporary crowns pp.1881-1361, 2018, https://doi.org/10.4012/dmj.2017-315
  5. Wear Resistance of 3D Printing Resin Material Opposing Zirconia and Metal Antagonists vol.11, pp.6, 2018, https://doi.org/10.3390/ma11061043
  6. 5축 밀링으로 가공한 PMMA 3본 브릿지의 내면 적합도 평가 vol.38, pp.2, 2016, https://doi.org/10.14347/kadt.2016.38.2.63
  7. Effect of polymerization temperature on the mechanical properties of provisional prosthesis resins vol.44, pp.4, 2017, https://doi.org/10.14815/kjdm.2017.44.4.311
  8. 제작방법에 따른 임시 수복용 레진의 파절강도 및 굴곡강도에 관한 연구 vol.57, pp.3, 2019, https://doi.org/10.4047/jkap.2019.57.3.225
  9. Performance of resin materials for temporary fixed denture prostheses vol.61, pp.2, 2019, https://doi.org/10.2334/josnusd.18-0150
  10. 밀링 공구의 마모가 PMMA 임플란트 임시보철물 변연 및 내면적합도에 미치는 영향 vol.41, pp.2, 2015, https://doi.org/10.14347/kadt.2019.41.2.63
  11. 치과 CAD/CAM 가공방식에 따른 임시보철물의 내면 적합도 : 3차원 중첩 분석 vol.41, pp.2, 2015, https://doi.org/10.14347/kadt.2019.41.2.81
  12. Wear resistance and microhardness of various interim fixed prosthesis materials vol.61, pp.3, 2015, https://doi.org/10.2334/josnusd.18-0323
  13. Comparison of fracture strength after thermomechanical aging between provisional crowns made with CAD/CAM and conventional method vol.12, pp.4, 2015, https://doi.org/10.4047/jap.2020.12.4.218
  14. 폴리카보네이트 임시수복재료의 물성 평가 vol.36, pp.3, 2015, https://doi.org/10.14368/jdras.2020.36.3.168
  15. The color stability and wear resistance of provisional implant restorations: A prospective clinical study vol.6, pp.5, 2015, https://doi.org/10.1002/cre2.311
  16. Accuracy evaluation of 3D printed interim prosthesis fabrication using a CBCT scanning based digital model vol.15, pp.10, 2015, https://doi.org/10.1371/journal.pone.0240508
  17. Temporary materials: comparison of in vivo and in vitro performance vol.24, pp.11, 2015, https://doi.org/10.1007/s00784-020-03278-5
  18. 디지털 광 조명 방식으로 제작한 임시 크라운의 세척 시간에 따른 3차원 적합도 평가 vol.42, pp.4, 2015, https://doi.org/10.14347/jtd.2020.42.4.334
  19. Evaluation of the effects of finish line type and width on the fracture strength of provisional crowns vol.109, pp.1, 2015, https://doi.org/10.1007/s10266-020-00533-9
  20. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9950131
  21. 표면연마와 제작방법에 따른 임시 수복용 레진의 굽힘강도에 관한 비교 연구 vol.37, pp.1, 2015, https://doi.org/10.14368/jdras.2021.37.1.16
  22. Can polylactic acid be a CAD/CAM material for provisional crown restorations in terms of fit and fracture strength? vol.40, pp.3, 2015, https://doi.org/10.4012/dmj.2020-232
  23. Influence of Conventional, CAD-CAM, and 3D Printing Fabrication Techniques on the Marginal Integrity and Surface Roughness and Wear of Interim Crowns vol.11, pp.19, 2015, https://doi.org/10.3390/app11198964
  24. Comparison of Fracture Strengths of Three Provisional Prosthodontic CAD/CAM Materials: Laboratory Fatigue Tests vol.11, pp.20, 2015, https://doi.org/10.3390/app11209589
  25. Effect of Cartridge Storage Time and Ambient Laboratory Conditions on the Stability of Mechanical Properties of Bis‐Acryl Interim Resin Materials vol.30, pp.9, 2015, https://doi.org/10.1111/jopr.13338