DOI QR코드

DOI QR Code

Codon Usage Bias and Determining Forces in Taenia solium Genome

  • Yang, Xing (College of Veterinary Medicine, Jilin University) ;
  • Ma, Xusheng (State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Luo, Xuenong (College of Veterinary Medicine, Jilin University) ;
  • Ling, Houjun (College of Veterinary Medicine, Jilin University) ;
  • Zhang, Xichen (College of Veterinary Medicine, Jilin University) ;
  • Cai, Xuepeng (College of Veterinary Medicine, Jilin University)
  • 투고 : 2015.05.16
  • 심사 : 2015.10.06
  • 발행 : 2015.12.31

초록

The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome.

키워드

참고문헌

  1. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 1985; 2: 13-34.
  2. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 1981; 151: 389-409. https://doi.org/10.1016/0022-2836(81)90003-6
  3. Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res 1997; 25: 244-245. https://doi.org/10.1093/nar/25.1.244
  4. Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 1986; 24: 28-38. https://doi.org/10.1007/BF02099948
  5. Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA 1999; 96: 4482-4487. https://doi.org/10.1073/pnas.96.8.4482
  6. Marais G, Mouchiroud D, Duret L. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci USA 2001; 98: 5688-5692. https://doi.org/10.1073/pnas.091427698
  7. Kliman RM, Hey J. Hill-Robertson interference in Drosophila melanogaster: reply to Marais, Mouchiroud and Duret. Genet Res 2003; 81: 89-90. https://doi.org/10.1017/S0016672302006067
  8. Vinogradov AE. Intron length and codon usage. J Mol Evol 2001; 52: 2-5. https://doi.org/10.1007/s002390010128
  9. Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res 2000; 28: 2084-2090. https://doi.org/10.1093/nar/28.10.2084
  10. Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 1995; 6: 494-500. https://doi.org/10.1016/0958-1669(95)80082-4
  11. Naya H, Romero H, Carels N, Zavala A, Musto H. Translational selection shapes codon usage in the GC-rich genome of Chlamydomonas reinhardtii. FEBS Lett 2001; 501: 127-130. https://doi.org/10.1016/S0014-5793(01)02644-8
  12. Lin K, Kuang Y, Joseph JS, Kolatkar PR. Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics. Nucleic Acids Res 2002; 30: 2599-2607. https://doi.org/10.1093/nar/30.11.2599
  13. Salamov AA, Solovyev VV. Ab initio gene finding in Drosophila genomic DNA. Genome Res 2000; 10: 516-522. https://doi.org/10.1101/gr.10.4.516
  14. Kliman RM, Irving N, Santiago M. Selection conflicts, gene expression, and codon usage trends in yeast. J Mol Evol 2003; 57: 98-109. https://doi.org/10.1007/s00239-003-2459-9
  15. Lafay B, Sharp PM. Synonymous codon usage variation among Giardia lamblia genes and isolates. Mol Biol Evol 1999; 16: 1484-1495. https://doi.org/10.1093/oxfordjournals.molbev.a026060
  16. McInerney JO. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci USA 1998; 95: 10698-10703. https://doi.org/10.1073/pnas.95.18.10698
  17. Flisser A, Sarti E, Lightowlers M, Schantz P. Neurocysticercosis: regional status, epidemiology, impact and control measures in the Americas. Acta Trop 2003; 87: 43-51. https://doi.org/10.1016/S0001-706X(03)00054-8
  18. Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T. Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol 2001; 53: 290-298. https://doi.org/10.1007/s002390010219
  19. Sharp PM, Li WH. The codon Adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987; 15: 1281-1295. https://doi.org/10.1093/nar/15.3.1281
  20. Greenacre MJ. Theory and applications of correspondence analysis. Informacion General. Academic Press. 1984.
  21. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25: 955-964. https://doi.org/10.1093/nar/25.5.0955
  22. Liu Q. Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans. Biosystems 2006; 85: 99-106. https://doi.org/10.1016/j.biosystems.2005.12.003
  23. Chen L, Liu T, Yang D, Nong X, Xie Y, Xie Y, Fu Y, Wu X, Huang X, Gu X, Wang S, Peng X, Yang G. Analysis of codon usage patterns in Taenia pisiformis through annotated transcriptome data. Biochem Biophys Res Commun 2013; 430: 1344-1348. https://doi.org/10.1016/j.bbrc.2012.12.078
  24. Zhong J, Li Y, Zhao S, Liu S, Zhang Z. Mutation pressure shapes codon usage in the GC-rich genome of foot-and-mouth disease virus. Virus Genes 2007; 35: 767-776. https://doi.org/10.1007/s11262-007-0159-z
  25. Sau K, Sau S, Mandal SC, Ghosh TC. Factors influencing the synonymous codon and amino acid usage bias in AT-rich Pseudomonas aeruginosa phage PhiKZ. Acta Biochim Biophys Sin (Shanghai) 2005; 37: 625-633. https://doi.org/10.1111/j.1745-7270.2005.00089.x
  26. Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 1988; 85: 2653-2657. https://doi.org/10.1073/pnas.85.8.2653
  27. Wright F. The 'effective number of codons' used in a gene. Gene 1990; 87: 23-29. https://doi.org/10.1016/0378-1119(90)90491-9
  28. Sueoka N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 1995; 40: 318-325. https://doi.org/10.1007/BF00163236
  29. Chen L, Yang DY, Liu TF, Nong X, Huang X, Xie Y, Fu Y, Zheng WP, Zhang RH, Wu XH, Gu XB, Wang SX, Peng XR, Yang GY. Synonymous codon usage patterns in different parasitic platyhelminth mitochondrial genomes. Genet Mol Res 2013; 12: 587-596. https://doi.org/10.4238/2013.February.27.8
  30. Rao Y, Wu G, Wang Z, Chai X, Nie Q, Zhang X. Mutation bias is the driving force of codon usage in the Gallus gallus genome. DNA Res 2011; 18: 499-512. https://doi.org/10.1093/dnares/dsr035
  31. Goetz RM, Fuglsang A. Correlation of codon bias measures with mRNA levels: analysis of transcriptome data from Escherichia coli. Biochem Biophys Res Commun 2005; 327: 4-7. https://doi.org/10.1016/j.bbrc.2004.11.134
  32. Rocha EP. Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 2004; 14: 2279-2286. https://doi.org/10.1101/gr.2896904
  33. Hershberg R, Petrov DA. General rules for optimal codon choice. PLoS Genet 2009; 5: e1000556. https://doi.org/10.1371/journal.pgen.1000556
  34. Kawabe A, Miyashita NT. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 2003; 78: 343-352. https://doi.org/10.1266/ggs.78.343
  35. Waterkeyn JG, Gauci C, Cowman AF, Lightowlers MW. Codon usage in Taenia species. Exp Parasitol 1998; 88: 76-78. https://doi.org/10.1006/expr.1998.4215
  36. Ingvarsson PK. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol Biol Evol 2007; 24: 836-844.
  37. Comeron JM, Kreitman M, Aguade M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 1999; 151: 239-249.
  38. Moriyama EN, Powell JR. Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 1997; 45: 514-523. https://doi.org/10.1007/PL00006256
  39. Coulombe-Huntington J, Majewski J. Intron loss and gain in Drosophila. Mol Biol Evol 2007; 24: 2842-2850.
  40. Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA. Selection for short introns in highly expressed genes. Nat Genet 2002; 31: 415-418. https://doi.org/10.1038/ng940
  41. Jeffares DC, Penkett CJ, Bahler J. Rapidly regulated genes are intron poor. Trends Genet 2008; 24: 375-378. https://doi.org/10.1016/j.tig.2008.05.006
  42. Andersson S, Kurland C. Codon preferences in free-living microorganisms. Microbiol Rev 1990; 54: 198-210.
  43. Shields DC, Sharp PM, Higgins DG, Wright F. " Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol 1988; 5: 704-716.
  44. Stenico M, Lloyd AT, Sharp PM. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res 1994; 22: 2437-2446. https://doi.org/10.1093/nar/22.13.2437
  45. Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 1988; 16: 8207-8211. https://doi.org/10.1093/nar/16.17.8207

피인용 문헌

  1. Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis vol.55, pp.2, 2015, https://doi.org/10.3347/kjp.2017.55.2.175
  2. Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes vol.27, pp.3, 2015, https://doi.org/10.1007/s10068-017-0285-x
  3. Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses vol.19, pp.8, 2015, https://doi.org/10.3390/ijms19082397
  4. Compositional Analysis of Flatworm Genomes Shows Strong Codon Usage Biases Across All Classes vol.10, pp.None, 2019, https://doi.org/10.3389/fgene.2019.00771
  5. Genetic evolution and codon usage analysis of NKX-2.5 gene governing heart development in some mammals vol.112, pp.2, 2015, https://doi.org/10.1016/j.ygeno.2019.07.023
  6. Selection constraints determine preference for A/U-ending codons inTaxus contorta vol.63, pp.4, 2015, https://doi.org/10.1139/gen-2019-0165
  7. Codon usage pattern in Gnetales evolved in close accordance with the Gnetifer hypothesis vol.196, pp.4, 2021, https://doi.org/10.1093/botlinnean/boab006