DOI QR코드

DOI QR Code

Potential Interaction of Plasmodium falciparum Hsp60 and Calpain

  • Yeo, Seon-Ju (Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University) ;
  • Liu, Dong-Xu (Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University) ;
  • Park, Hyun (Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University)
  • Received : 2015.11.08
  • Accepted : 2015.11.19
  • Published : 2015.12.31

Abstract

After invasion of red blood cells, malaria matures within the cell by degrading hemoglobin avidly. For enormous protein breakdown in trophozoite stage, many efficient and ordered proteolysis networks have been postulated and exploited. In this study, a potential interaction of a 60-kDa Plasmodium falciparum (Pf)-heat shock protein (Hsp60) and Pf-calpain, a cysteine protease, was explored. Pf-infected RBC was isolated and the endogenous Pf-Hsp60 and Pf-calpain were determined by western blot analysis and similar antigenicity of GroEL and Pf-Hsp60 was determined with anti-Pf-Hsp60. Potential interaction of Pf-calpain and Pf-Hsp60 was determined by immunoprecipitation and immunofluorescence assay. Mizoribine, a well-known inhibitor of Hsp60, attenuated both Pf-calpain enzyme activity as well as P. falciparum growth. The presented data suggest that the Pf-Hsp60 may function on Pf-calpain in a part of networks during malaria growth.

Keywords

References

  1. World Malaria Report [http://www.who.int/campaigns/malaria-day/2013/en/index.html]
  2. Pallavi R, Roy N, Nageshan RK, Talukdar P, Pavithra SR, Reddy R, Venketesh S, Kumar R, Gupta AK, Singh RK, Yadav SC, Tatu U. Heat shock protein 90 as a drug target against protozoan infections: Biochemical characterization of hsp90 from plasmodium falciparum and trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J Biol Chem 2010; 285: 37964-37975. https://doi.org/10.1074/jbc.M110.155317
  3. Acharya P, Kumar R, Tatu U. Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol 2007; 153: 85-94. https://doi.org/10.1016/j.molbiopara.2007.01.009
  4. Pavithra SR, Kumar R, Tatu U. Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum. PLoS Comput Biol 2007; 3:1701-1715.
  5. Rug M, Maier AG. The heat shock protein 40 family of the malaria parasite Plasmodium falciparum. IUBMB Life 2011; 63: 1081-1086. https://doi.org/10.1002/iub.525
  6. Gitau GW, Mandal P, Blatch GL, Przyborski J, Shonhai A. Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperone 2012; 17: 191-202. https://doi.org/10.1007/s12192-011-0299-x
  7. Bayih AG, Pillai DR. Mouse studies on inhibitors of Plasmodium falciparum Hsp90: progress and challenges. Parasitology 2014; 141: 1216-1222. https://doi.org/10.1017/S0031182014000754
  8. Syin C, Goldman ND. Cloning of a Plasmodium falciparum gene related to the human 60-kDa heat shock protein. Mol Biochem Parasitol 1996; 79: 13-19. https://doi.org/10.1016/0166-6851(96)02633-3
  9. Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM. cpnDB: a chaperonin sequence database. Genome Res 2004; 14: 1669-1675. https://doi.org/10.1101/gr.2649204
  10. Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J. Hsp60 is targeted to a cryptic mitochondrion-derived organelle ("crypton") in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 1999; 19: 2198-2205. https://doi.org/10.1128/MCB.19.3.2198
  11. Misra RC, Verma AK, Verma SK, Kumar V, Siddiqui WA, Siddiqi MI, Murthy PK. Heat shock protein 60 of filarial parasite Brugia malayi: cDNA cloning, expression, purification and in silico modeling and analysis of its ATP binding site. Exp Parasitol 2012; 132: 257-266. https://doi.org/10.1016/j.exppara.2012.07.012
  12. Plumper E, Bradley PJ, Johnson PJ. Competition and protease sensitivity assays provide evidence for the existence of a hydrogenosomal protein import machinery in Trichomonas vaginalis. Mol Biochem Parasitol 2000; 106: 11-20. https://doi.org/10.1016/S0166-6851(99)00196-6
  13. Akide-Ndunge OB, Tambini E, Giribaldi G, McMillan PJ, Muller S, Arese P, Turrini F. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells. Malar J 2009; 8: 113. https://doi.org/10.1186/1475-2875-8-113
  14. Rappa F, Unti E, Baiamonte P, Cappello F, Scibetta N. Different immunohistochemical levels of Hsp60 and Hsp70 in a subset of brain tumors and putative role of Hsp60 in neuroepithelial tumorigenesis. Eur J Histochem 2013; 57: e20. https://doi.org/10.4081/ejh.2013.e20
  15. Chun JN, Choi B, Lee KW, Lee DJ, Kang DH, Lee JY, Song IS, Kim HI, Lee SH, Kim HS, Lee NK, Lee SY, Lee KJ, Kim J, Kang SW. Cytosolic Hsp60 is involved in the NF-kappaB-dependent survival of cancer cells via IKK regulation. PLoS One 2010; 5: e9422. https://doi.org/10.1371/journal.pone.0009422
  16. Kazmierczuk A, Kilianska ZM. The pleiotropic activity of heat-shock proteins. Postepy Hig Med Dosw (Online) 2009; 63:502-521.
  17. Fenton WA, Horwich AL. Chaperonin-mediated protein folding: fate of substrate polypeptide. Q Rev Biophys 2003; 36: 229-256 https://doi.org/10.1017/S0033583503003883
  18. Pavithra SR, Kumar R, Tatu U. Systems analysis of chaperone networks in themalarial parasite Plasmodium falciparum. PLoS Comput Biol 2007; 3: 1701-1715.
  19. Rosenthal PJ. Proteases of malaria parasites: new targets for chemotherapy. Emerg Infect Dis 1998; 4: 49-57. https://doi.org/10.3201/eid0401.980107
  20. Wu Y, Wang X, Liu X, Wang Y. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 2003; 13: 601-616. https://doi.org/10.1101/gr.913403
  21. Drew ME, Banerjee R, Uffman EW, Gilbertson S, Rosenthal PJ, Goldberg DE. Plasmodium food vacuole plasmepsins are activated by falcipains. J Biol Chem 2008; 283: 12870-12876. https://doi.org/10.1074/jbc.M708949200
  22. Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci USA 2002; 99: 990-995. https://doi.org/10.1073/pnas.022630099
  23. Russo I, Oksman A, Vaupel B, Goldberg DE. A calpain unique to alveolates is essential in Plasmodium falciparum and its knockdown reveals an involvement in pre-S-phase development. Proc Natl Acad Sci USA 2009; 106: 1554-1559. https://doi.org/10.1073/pnas.0806926106
  24. Choi YY, Jung SY, Cho PY, Soh BY, Zheng B, Kim SY, Park KI, Park H. Confocal microscopic findings of cysteine protease calpain in Plasmodium falciparum. Exp Parasitol 2010; 124: 341-345. https://doi.org/10.1016/j.exppara.2009.10.007
  25. Kim YM, Lee MH, Piao TG, Lee JW, Kim JH, Lee S, Choi KM, Jiang JH, Kim TU, Park H. Prodomain processing of recombinant plasmepsin II and IV, the aspartic proteases of Plasmodium falciparum, is auto- and trans-catalytic. J Biochem 2006; 139: 189-195. https://doi.org/10.1093/jb/mvj018
  26. Itoh H, Komatsuda A, Wakui H, Miura AB, Tashima Y. Mammalian HSP60 is a major target for an immunosuppressant mizoribine. J Biol Chem 1999; 274: 35147-35151. https://doi.org/10.1074/jbc.274.49.35147
  27. Soh BY, Song HO, Lee Y, Lee J, Kaewintajuk K, Lee B, Choi YY, Cho JH, Choi S, Park H. Identification of active Plasmodium falciparum calpain to establish screening system for Pf-calpain-based drug development. Malar J 2013; 12: 47. https://doi.org/10.1186/1475-2875-12-47
  28. Jung SY, Zheng B, Choi YY, Soh BY, Kim SY, Park KI, Park H. Antimalarial effect of N-acetyl-L-Leucyl-L-leucyl-L-norleucinal by the inhibition of Plasmodium falciparum Calpain. Arch Pharm Res 2009; 32: 899-906. https://doi.org/10.1007/s12272-009-1612-4
  29. Gomes MM, Budu A, Ventura PD, Bagnaresi P, Cotrin SS, Cunha RL, Carmona AK, Juliano L, Gazarini ML. Specific calpain activity evaluation in Plasmodium parasites. Anal Biochem 2014; 468C: 22-27.
  30. Goldberg DE, Slater AF, Cerami A, Henderson GB. Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. Proc Natl Acad Sci USA 1990; 87: 2931-2935. https://doi.org/10.1073/pnas.87.8.2931
  31. Deocaris CC, Kaul SC, Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 2006; 11: 116-128. https://doi.org/10.1379/CSC-144R.1
  32. Fakruddin JM, Biswas S, Sharma YD. Metalloprotease activity in a small heat shock protein of the human malaria parasite Plasmodium vivax. Infect Immun 2000; 68: 1202-1206. https://doi.org/10.1128/IAI.68.3.1202-1206.2000

Cited by

  1. Improvement of a rapid diagnostic application of monoclonal antibodies against avian influenza H7 subtype virus using Europium nanoparticles vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-08328-9
  2. Development of a Rapid Fluorescent Immunochromatographic Test to Detect Respiratory Syncytial Virus vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103013
  3. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites vol.20, pp.23, 2015, https://doi.org/10.3390/ijms20235930
  4. Development of a Rapid Fluorescent Diagnostic System to Detect Subtype H9 Influenza A Virus in Chicken Feces vol.22, pp.16, 2015, https://doi.org/10.3390/ijms22168823