DOI QR코드

DOI QR Code

Sequence Variation in Superoxide Dismutase Gene of Toxoplasma gondii among Various Isolates from Different Hosts and Geographical Regions

  • Wang, Shuai (Department of Parasitology, School of Medicine, Shandong University) ;
  • Cao, Aiping (Department of Parasitology, School of Medicine, Shandong University) ;
  • Li, Xun (Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University) ;
  • Zhao, Qunli (Department of Parasitology, School of Medicine, Shandong University) ;
  • Liu, Yuan (Department of Parasitology, School of Medicine, Shandong University) ;
  • Cong, Hua (Department of Parasitology, School of Medicine, Shandong University) ;
  • He, Shenyi (Department of Parasitology, School of Medicine, Shandong University) ;
  • Zhou, Huaiyu (Department of Parasitology, School of Medicine, Shandong University)
  • Received : 2015.01.14
  • Accepted : 2015.05.03
  • Published : 2015.06.30

Abstract

Toxoplasma gondii, an obligate intracellular protozoan parasite of the phylum Apicomplexa, can infect all warm-blooded vertebrates, including humans, livestock, and marine mammals. The aim of this study was to investigate whether superoxide dismutase (SOD) of T. gondii can be used as a new marker for genetic study or a potential vaccine candidate. The partial genome region of the SOD gene was amplified and sequenced from 10 different T. gondii isolates from different parts of the world, and all the sequences were examined by PCR-RFLP, sequence analysis, and phylogenetic reconstruction. The results showed that partial SOD gene sequences ranged from 1,702 bp to 1,712 bp and A + T contents varied from 50.1% to 51.1% among all examined isolates. Sequence alignment analysis identified total 43 variable nucleotide positions, and these results showed that 97.5% sequence similarity of SOD gene among all examined isolates. Phylogenetic analysis revealed that these SOD sequences were not an effective molecular marker for differential identification of T. gondii strains. The research demonstrated existence of low sequence variation in the SOD gene among T. gondii strains of different genotypes from different hosts and geographical regions.

Keywords

References

  1. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363: 1965-1976. https://doi.org/10.1016/S0140-6736(04)16412-X
  2. Weiss LM, Dubey JP. Toxoplasmosis: a history of clinical observations. Int J Parasitol 2009; 39: 895-901. https://doi.org/10.1016/j.ijpara.2009.02.004
  3. Cenci-Goga BT, Rossitto PV, Sechi P, McCrindleCM, Cullor JS. Toxoplasma in animals, food, and humans: an old parasite of new concern. Foodborne Pathog 2011; 8: 751-762. https://doi.org/10.1089/fpd.2010.0795
  4. Sibley LD, Ajioka JW. Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps. Annu Rev Microbiol 2008; 62: 329-351. https://doi.org/10.1146/annurev.micro.62.081307.162925
  5. Sibley LD, Boothroyd JC. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature 1992; 359: 82-85. https://doi.org/10.1038/359082a0
  6. Howe DK, Sibley LD. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 1995; 172: 1561-1566. https://doi.org/10.1093/infdis/172.6.1561
  7. Sibley LD, Mordue DG, Su CL, Robben PM. Howe DK. Genetic approaches to studying virulence and pathogenesis in Toxoplasma gondii. Philos Trans Roy Soc B 2002; 357: 81-88. https://doi.org/10.1098/rstb.2001.1017
  8. Darde ML. Toxoplasma gondii, "new" genotypes and virulence. Parasite 2008; 15: 366-371. https://doi.org/10.1051/parasite/2008153366
  9. Delhaes L, Ajzenberg D, Sicot B, Bourgeot P, Darde ML, Dei-Cas E, Houfflin-Debarge V. Severe congenital toxoplasmosis due to a Toxoplasma gondii strain with an atypical genotype: case report and review. Prenat Diagn 2010; 30: 902-905. https://doi.org/10.1002/pd.2563
  10. Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 2012; 25: 264-296. https://doi.org/10.1128/CMR.05013-11
  11. Su C, Zhang X, Dubey JP. Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers: a high resolution and simple method for identification of parasites. Int J Parasitol 2006; 36: 841-848. https://doi.org/10.1016/j.ijpara.2006.03.003
  12. Miller AF. Superoxide dismutase: ancient enzymes and new insights. FEBS Lett 2012; 586: 585-595. https://doi.org/10.1016/j.febslet.2011.10.048
  13. Fukai T, Ushio-Fukai M. Superoxide dismutase: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 2011; 15: 1583-606. https://doi.org/10.1089/ars.2011.3999
  14. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 2009; 47: 344-356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018
  15. Noor R, Mittal S, Iqbal J. Superoxide dismutase-applications and relevance to human diseases. Med Sci Monit 2002; 8: 210-215.
  16. Odberg-Ferragut C1, Renault JP, Viscogliosi E, Toursel C, Briche I, Engels A, Lepage G, Morgenstern-Badarau I, Camus D, Tomavo S, Dive D. Molecular cloning, expression analysis and iron metal cofactor characterisation of a superoxide dismutase from Toxoplasma gondii. Mol Biochem Parasitol 2000; 106: 121-129. https://doi.org/10.1016/S0166-6851(99)00211-X
  17. Su C, Shwab EK, Zhou P, Zhu XQ, Dubey JP. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 2010; 137: 1-11. https://doi.org/10.1017/S0031182009991065
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 24: 4876-4882.
  19. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  20. Sibley LD, Lawson R, Weidner E. Superoxide dismutase and catalase in Toxoplasma gondii. Mol Biochem Parasitol 1986; 19: 83-87. https://doi.org/10.1016/0166-6851(86)90069-1
  21. Chen J, Li ZY, Zhou DH, Liu GH, Zhu XQ. Genetic diversity among Toxoplasma gondii strains from different hosts and geographical regions revealed by sequence analysis of GRA5 gene. Parasit Vectors 2012; 5: 279. https://doi.org/10.1186/1756-3305-5-279
  22. Fazaeli A, Carter PE, Darde ML, Pennington TH. Molecular typing of Toxoplasma gondii strains by GRA6 gene sequence analysis. Int J Parasitol 2000; 30: 637-642. https://doi.org/10.1016/S0020-7519(00)00036-9
  23. Zhang NZ, Xu Y, Huang SY, Zhou DH, Wang RA, Zhu XQ. Sequence variation in Toxoplasma gondii rop17 gene among strains from different hosts and geographical locations. ScientificWorldJournal 2014; 2014: 349325.
  24. Sibley LD, Khan A, Ajioka JW, Rosenthal BM. Genetic diversity of Toxoplasma gondii in animals and humans. Philos Trans Roy Soc Lond B Biol Sci 2009; 364: 2749-2761. https://doi.org/10.1098/rstb.2009.0087
  25. Ren D, Zhou DH, Xu MJ, Zhou Y. Sequence variation in Toxoplasma gondii MIC13 gene among isolates from different hosts and geographical locations. Afr J Microbiol Res 2012; 6: 1333-1337. https://doi.org/10.5897/AJMR12.040
  26. Chen J, Fang SF, Zhou DH, Li ZY, Liu GH, Zhu XQ. Sequence variation in the Toxoplasma gondii eIF4A gene among strains from different hosts and geographical locations. Genet Mol Res 2014; 13: 3356-3361. https://doi.org/10.4238/2014.April.29.14

Cited by

  1. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice vol.17, pp.None, 2017, https://doi.org/10.1186/s12879-017-2507-5