DOI QR코드

DOI QR Code

Anti-inflammatory Effects of Staphylea bumalda Leaves Extracts in Murine Macrophages

쥐 대식세포에 대한 고추나무(Staphylea bumalda) 잎의 항염증 효과 검증

  • Kim, Jeong Hwa (College of Pharmacy, Chungbuk National University) ;
  • Lee, Jae Kwon (Department of Biology Education, College of Education, Chungbuk National University)
  • 김정화 (충북대학교 약학대학) ;
  • 이재권 (충북대학교 사범대학 생물교육과)
  • Received : 2015.09.22
  • Accepted : 2015.10.29
  • Published : 2015.12.31

Abstract

Aim of the present study was to investigate whether methanol extract from the leaves of Staphylea bumalda could be used to suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophage cell lines, Raw 264.7 cells. The extract reduced nitric oxide (NO), cyclooxigenase-2 (COX-2) and pro-inflammatory cytokines production from LPS-stimulated Raw 264.7 cells. These inhibitory effects were associated with decreases in the phosphorylation of MAP kinases and the activity of $NF{\kappa}B$ signal pathways. Our results indicate that Staphylea bumalda significantly inhibits the inflammatory activity of activated macrophages, suggesting that Staphylea bumalda could be a potential candidate for the treatment of inflammatory disease.

Keywords

References

  1. Yu, Q., Matsunami, K., Otsuka, H. and Takeda, Y. : Staphylionosides A-K: megastigmane glucosides from the leaves of Staphylea bumalda DC. Chem. Pharm. Bull. (Tokyo) 53, 800 (2005). https://doi.org/10.1248/cpb.53.800
  2. Hibbs, J. B., Taintor, R. R., Vavrin, I. and Rachlin, E. M. : Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochembiophys. Rescommun. 157, 87 (1998).
  3. Thomas, P. M. and Edginton, S. : Human monocyte mediated tumor cytotoxicity. J. Immunol. 132, 1980 (1984).
  4. Sohn, S. J., Kwon, Y. S., Kim, S. S., Chun, W. J. and Kim, C. M. : Chemical Constituents of the Leaves of Staphylea bumalda. Natural Product Sciences 10, 173 (2004).
  5. Park, M. J., Lee, E. K., Heo, H. S., Kim, M. S., Sung, B., Kim, M. K., Lee, J., Kim, N. D., Anton, S., Choi, J. S., Yu, B. P. and Chung, H. Y. : The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways. J. Med. Food 12, 351 (2009). https://doi.org/10.1089/jmf.2008.0006
  6. Calderon-Montano, J. M., Burgos-Moron, E., Perez-Guerrero, C. and Lopez-Lazaro, M. : A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 11, 298 (2011). https://doi.org/10.2174/138955711795305335
  7. Choi, I. S., Choi, E. Y., Jin, J. Y., Park, H. R., Choi, J. I. and Kim, S. J. : Kaempferol inhibits P. intermedia lipopolysaccharideinduced production of nitric oxide through translational regulation in murine macrophages: critical role of heme oxygenase-1-mediated ROS reduction. J. Periodontol. 84, 545 (2013). https://doi.org/10.1902/jop.2012.120180
  8. Ashton, D. S. and Moncada, S. : Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664 (1988). https://doi.org/10.1038/333664a0
  9. Kubes, P. : Inducible nitric oxide synthase; a little bit of good in all of us. Gut 7, 6 (2000).
  10. Kawamata, H., Ochiai, H., Mantani, N. and Terasawa, K. : Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated Raw 264.7 cells, a murine macrophage cell line. Am. J. Chin. Med. 28, 217 (2000). https://doi.org/10.1142/S0192415X0000026X
  11. Lee, B. G., Kim, S. H., Zee, O. P., Lee, K. R., Lee, H. Y., Han, J. W. and Lee, H. W. : Suppression of inducible nitric oxide synthase expression in Raw 264.7 macrophages by twocarboline alkaloids extracted from Meliaazedarach. Eur. J. Pharmacol. 406, 301 (2000). https://doi.org/10.1016/S0014-2999(00)00680-4
  12. Seo, W. G., Pae, H. O., Oh, G. S., Chai, K. Y., Yun, Y. G., Kwon, T. O. and Chung, H. T. : Inhibitory effect of ethyl acetate fraction from Cudraniatricuspidata on the expression of nitric oxide synthase gene in Raw 264.7 macrophages stimulated with interferon-and lipopolysaccharide. Gen. Pharmacol. 35, 21 (2000). https://doi.org/10.1016/S0306-3623(01)00086-6
  13. Chiou, W. F., Chou, C. J. and Chen, C. F. : Camptothecin suppresses nitric oxide biosynthesis in Raw 264.7 macrophages. Life Sci. 69, 625 (2001). https://doi.org/10.1016/S0024-3205(01)01154-7
  14. Seo, W. G., Pae, H. O., Oh, G. S., Kim, N. Y., Kwon, T. O., Shin, M. K., Chai, K. Y. and Chung, H. T. : The aqueous extract of Rhodiolasachalinensis root enhances the expression of inducible nitric oxide synthase gene in Raw 264.7 macrophages. J. Ethnopharmacol. 76, 119 (2001). https://doi.org/10.1016/S0378-8741(01)00220-3
  15. Sharma, J. N., Al-Omran, A. and Parvathy, S. S. : Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15, 252 (2007). https://doi.org/10.1007/s10787-007-0013-x
  16. Inoue, H., Yokoyamo, C., Hara, S. and Tanabe, T. J. : Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. J. Biol. Chem. 270, 24965 (1995). https://doi.org/10.1074/jbc.270.42.24965
  17. Crofford, L. J., Willer, R. L., Ristimaki, A. P., Sano, H., Remmers, E. F., Epps, H. R. and Hla, T. : Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. Effects of interleukin-1 beta, phorbol ester, and corticosteroids. J. Clin. Invest. 93, 1095 (1994). https://doi.org/10.1172/JCI117060
  18. Beutler, B. and Cerami, A. : The biology of cachectin/TNF - A primary mediator of the host response. Annu. Rev. Immunol. 7, 625 (1989). https://doi.org/10.1146/annurev.iy.07.040189.003205
  19. Kurumbail, R., Kiefer, J. R. and Marnett, L. J. : Cyclooxygenase enzymes: Catalysis and inhibition. Current. Opinion. in Structural. Biology 11, 752 (2001). https://doi.org/10.1016/S0959-440X(01)00277-9
  20. Yoon, H. J., Moon, M. E., Park, H. S., Im, S. Y., Lee, J. H. and Kim, Y. H. : Effects of Chitosan oligosaccharide on the C. albicans-induced Inflammatory Effect in mice and raw 264.7 macrophage cells. J. Chitin. Chitosan 12, 15 (2007).
  21. Lee, A. K., Sung, S. H., Kim, Y. C. and Kim, S. G. : Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-${\alpha}$ and COX-2 expression by sauchinone effects on I-${\kappa}B{\alpha}$ phosphorylation, C/EBP and AP-1 activation. British J. Pharmacol. 139, 11 (2003). https://doi.org/10.1038/sj.bjp.0705231
  22. Papayianni, A. : Cytokines, growth factors, and other inflammatory mediators in glomerulonephritis. Ren. Fail. 18, 725 (1996). https://doi.org/10.3109/08860229609047702
  23. Delgado, A. V., McManus, A. T. and Chambers, J. P. : Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 37, 355 (2003). https://doi.org/10.1016/j.npep.2003.09.005
  24. Hibi, M., Nakajima, K. and Hirano, T. : IL-6 cytokine family and signal transduction: a model of the cytokine system. J. Mol. Med. 74, 1 (1996). https://doi.org/10.1007/BF00202068
  25. Hirano, T., Matsuda, T. and Nakajima, K. : Signal transduction through gp130 that is shared among the receptors for the interleukin 6 related cytokine subfamily. Stem Cells 12, 262 (1994). https://doi.org/10.1002/stem.5530120303
  26. Chen, F., Castranova, V. and Shi, X. : New insights into the role of nuclear factor-kappaB in cell growth regulation. Am. J. Pathol. 159, 387 (2001). https://doi.org/10.1016/S0002-9440(10)61708-7
  27. Garrington, T. P. and Johnson, G. L. : Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Cell. Biol. 11, 211 (1999). https://doi.org/10.1016/S0955-0674(99)80028-3
  28. Seo, J. H., Lim, J. W., Kim, H. and Kim, K. H. : Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases. AP-1 and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. Lab. Invest. 84, 49 (2004). https://doi.org/10.1038/labinvest.3700010