References
- B. Y. Kornilovich, G. N. Pshinko, and L. N. Spasenova, "Influence of humic compounds on caesium-137 sorption by mineral components of soils", Radiochemistry, 42, 92 (2000).
- M. S. Hodges and C. E. Sanders, "Nuclear criticality accident safety, near misses and classification", Progress in Nuclear Energy, 76 88 (2014). https://doi.org/10.1016/j.pnucene.2014.05.018
- C. Mothersill and C. Seymour, "Implications for human and environmental health of low doses of ionising radiation", J. Environ. Radioact., 133, 5 (2014). https://doi.org/10.1016/j.jenvrad.2013.04.002
-
A. A. Odintsov, A. D. Sazhenyuk, and V. A. Satsyuk, "Association of
$^{90x}Sr$ ,$^{137}Cs$ ,$^{349,240}Pu$ ,$^{241}Am$ , and$^{244}Cm$ with soil absorbing complex in soils typical of the vicinity of the Cherobyl NPP", Radiochem., 46, 95 (2005). -
A. V. Panov, R. M. Alexakhin, P. V. Prudnikov, A. A. Novikov, and A. A. Muzalevskaya, "Influence of protective activity on
$^{137}Cs$ accumulation by farming plants from soil after Chernobyl accident", Eurasian soil science, 42, 445 (2009). https://doi.org/10.1134/S1064229309040127 - I. G. Teplyakov, G. N. Romanov, and D. A. Spirin, "Returning of lands in East-Ural radioactive trace to farming use", Radiat. Saf. Quest., 3, 33 (1997).
- M. V. Zubets, B. S. Prister, R. M. Alexakhin, I. M. Bogdevich, and V. A. Kashparov, "Urgent problems and tasks of scientific support of farming in radioactively contaminated zone of Chernobyl NPP", Agroecol. J., 1, 5 (2011).
-
M. Chino, H. Nakayama, H. Nagai, H. Terada, G. Katata, and H. Yamazawa, "Preliminary estimation of release amounts of
$^{131}I$ and$^{137}Cs$ accidentally discharged from the Fukushima Dai-ichi nuclear power plant into the atmosphere", J. Nucl. Sci. Technol., 48, 1129 (2011). https://doi.org/10.1080/18811248.2011.9711799 - S. Endo, S. Kimura, T. Takatsuji, K. Nanasawa, T. Imanaka, and K. Shizuma, "Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi nuclear power plant accident and associated estimated cumulative external dose estimation", J. Environ. Radioact., 111, 18 (2012). https://doi.org/10.1016/j.jenvrad.2011.11.006
- M. Hirano, T. Yonomoto, M. Ishigaki, N. Watanabe, Y. Maruyama, Y. Sibamoto, T. Watanabe, and K. Moriyama, "Insights from review and analysis of the Fukushima Dai-ichi accident", J. Nucl. Sci. Technol., 49, 1 (2012). https://doi.org/10.1080/18811248.2011.636538
- N. Kaneyasu, H. Ohashi, F. Suzuki, T. Okuda, and F. Ikemori, "Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident", Environ. Sci. Technol., 46, 5720 (2012). https://doi.org/10.1021/es204667h
-
H. Kato, Y. Onda, and M. Teramage, "Depth distribution of
$^{137}Cs$ ,$^{134}Cs$ , and$^{131}I$ in soil profile after Fukushima Dai-ichi nuclear power plant accident", J. Environ. Radioact., 111, 59 (2012). https://doi.org/10.1016/j.jenvrad.2011.10.003 - H. Katsumi, "2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results", J. Environ. Radioact., 111, 13 (2012). https://doi.org/10.1016/j.jenvrad.2011.09.003
- M. Nakano and R. N. Yong, "Overview of rehabilitation schemes for farmlands contaminated with radioactive cesium released from Fukushima power plant", Eng. Geol., 155, 87 (2013). https://doi.org/10.1016/j.enggeo.2012.12.010
- N. Yamaguchi, S. Eguchi, H. Fujiwara, K. Hayashi, and H. Tsukada, "Radiocesium and radioiodine in soil particles agitated by agricultural particles: field observation after the Fukushima nuclear accident", Sci. Total Environ., 425, 128 (2012). https://doi.org/10.1016/j.scitotenv.2012.02.037
- C. S. Lee, "The current of ultrapure water system", Membr. J., 6, 127 (1996).
- J. Wang and Zh. Wan, "Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry", Progress in Nuclear Energy, 78, 47 (2015). https://doi.org/10.1016/j.pnucene.2014.08.003
-
A. M. El-Kamash, "Evaluation of zeolite a for the sorptive removal of
$Cs^+$ and$Sr^{2+}$ ions from aqueous using batch and fixed bed column operations", J. Hazard. Mater., 151, 432 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.009 - T. A. Todd and V. N. Romanovskiy, "A comparison of crystalline silicotitanate and ammonium molybdophosphate-polyacrylonitrile composite sorbent for the separation of cesium from acidic waste", Radiochem., 47, 398 (2005). https://doi.org/10.1007/s11137-005-0109-3
- A. Nilchi, R. Saberi, M. Moradi, H. Azizpour, and R. Zarghami, "Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution", Chem. Eng. J., 172, 572 (2011). https://doi.org/10.1016/j.cej.2011.06.011
- F. Sebesta and V. Stefura, "Composite ion exchanger with ammonium molybdophosphate and its properties", J. Radioanal. Nucl. Chem., 140, 15 (1990). https://doi.org/10.1007/BF02037360
-
T. J. Tranter, R. S. Herbst, T. A. Todd, A. L. Olson, and H. B. Eldredge, "Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of
$^{137}Cs$ from acidic nuclear waste solutions", Adv. Environ. Res., 6, 107 (2002). https://doi.org/10.1016/S1093-0191(00)00073-3 - T. A. Todd, N. R. Mann, T. J. Tranter, F. Sebesta, J. John, and A. Motl, "Cesium adsorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents", J. Radioanal. Nucl. Chem., 254, 47 (2002). https://doi.org/10.1023/A:1020881212323
- Y. Park, Y. C. Lee, W. S. Shin, and S. J. Choi, "Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN)", Chem. Eng. J., 162, 685 (2010). https://doi.org/10.1016/j.cej.2010.06.026
- Y. Park, W. S. Shin, and S. J. Choi, "Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): An efficient ion exchanger for cesium ion", Chem. Eng. J., 220, 204 (2013). https://doi.org/10.1016/j.cej.2013.01.027
- O. Kutowy, W. L. Thayer, J. Tigner, S. Sourirajan, and G. K. Dhawan, "Tubular cellulose acetate reverse osmosis membranes for treatment of oily wastewaters", Ind. Eng. Chem. Prod. Res. Dev., 20, 354 (1981). https://doi.org/10.1021/i300002a024
- D. J. Kim, W. M. Choi, and S. Y. Nam, "Research and development trend of pertraction process using membrane", Membr. J., 22, 381 (2012).
-
I. Smiciklas, I. Dimovic, and M. Mitric, "Removal of
$Co^{2+}$ from aqueous solutions by hydroxyapatite", Water Res., 40, 2267 (2006). https://doi.org/10.1016/j.watres.2006.04.031 - B. Come and N. A. Chapman, "Natural analogues in radioactive waste disposal", pp. 165-286, Graham & Trotman, Norwell (1987).
- V. K. Bityukov and P. A. Vadim, "Absorption coefficient of molten aluminum oxide in semitransparent spectral range", Appl. Phys. Res., 5, 51 (2013).
- H. Bach and N. Norbert, "The properties of optical glass", pp. 297-308, Springer, Berlin (1998).
- P. Xu, J. E. Drewes, D. Heil, and G. Wang, "Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology", Water Res., 42, 2605 (2008). https://doi.org/10.1016/j.watres.2008.01.011
- G. T. Lee, W. I. Cho, and B. W. Cho, "Characteristics of capacitive deionization process using carbon aerogel composite electrodes", J. Korean Electrochem. Soc., 2, 77 (2005).
- P. M. Biesheuvel and A. V. D. Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
- H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, "Electrosorptive desalination by carbon nanotubes and nanofibers electrodes and ion-exchange membranes", Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
- Y. J. Kim, J. H. Kim, and J. H. Choi, "Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI)", J. Membrane Sci., 429, 52 (2013). https://doi.org/10.1016/j.memsci.2012.11.064
- J. Y. Lee, S. J. Seo, S. H. Yun, and S. H. Moon, "Preparation of ion exchanger electrodes for advanced membrane capacitive deionization (MCDI)", Water Res., 45, 5375 (2011). https://doi.org/10.1016/j.watres.2011.06.028
- N. S. Kwak, J. S. Koo, T. S. Hwang, and E. M. Choi, "Synthesis and electrical properties of NaSSMAA-MMA cation exchange membranes for membrane capacitive deionization (MCDI)", Desalination, 285, 138 (2012). https://doi.org/10.1016/j.desal.2011.09.046
- J. S. Kim, J. H. Jeong, and J. W. Rhim, "Performance study of membrane capacitive deionization process applied by perfluoropolymer and aminated poly(ether imide) ion exchange membranes", Membr. J., 25, 60 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.60
- W. S. Shin, Y. J. Park, C. R. Kim, and S. J. Choi, "Sorptive removal of radionuclides (cobalt, strontium and cesium) using AMP/IO-PAN composites", J. of Nucl. Fuel Cycle and Waste Technol., 11, 259 (2013). https://doi.org/10.7733/jnfcwt-k.2013.11.4.259
- J. G. Jacangelo, J.-M. laine, E. W. Cummings, A. Deutschmann, J. Mallevialle, and M. R. Wiesner, "Evaluation of ultrafiltration membrane pretreatment and nanofiltration of surface waters", pp. 900-916, AWWA Research foundation, Denver (1994).
- W. J. Conlon and S. A. Mcclellan, "Membrane softening: A treatment process comes of age", J. Am. Water Works Assoc., 81, 48 (1989).
- J. S. Taylor, D. M. Thompson, and J. K. Carswell, "Applying membrane processes to groundwater sources for trihalomethane precursor control", J. Am. Water Works Assoc. 79, 72 (1987). https://doi.org/10.1002/j.1551-8833.1987.tb02897.x
- S. F. march and D. Gordon, "New bifunctional cationic-exchange resins for nuclear waste treatment", React. Funct. Polym., 35, 75 (1997). https://doi.org/10.1016/S1381-5148(97)00051-5
- N. J. Bridger, C. P. Jones, and M. D. Neville, "Electrochemical ion exchange", J. Chem. Technol. Biotechnol., 50, 469 (1991).
- A. B. Bocarsly and S. Sinha, "Chemically derivatized nickel surface: Synthesis of a new class of stable electrode interfaces", J. Electroanal. Chem. Interfacial electrochem., 137, 157 (1982). https://doi.org/10.1016/0022-0728(82)85075-4
- T. D. Clarke and C. M. Wai, "Selective removal of cesium from acid solutions with immobilized copper ferrocyanide", Anal. Chem., 70, 3708 (1998). https://doi.org/10.1021/ac971138b
- K. M. Jei, "Preparation of PAN-zeolite 4A composite ion exchanger and its uptake behavior for Sr and Cs ions in acid solution", Korean J. Chem. Eng., 19, 838 (2002). https://doi.org/10.1007/BF02706978
- H. Strathmann, "Selective removal of heavy metal ions from aqueous solutions by diafiltration of macromolecular complexes", Sep. Sci. Technol., 15, 1135 (1980). https://doi.org/10.1080/01496398008076291
- J. S. Shin, "The method of layer isolation-absorption for removal of waste liquid on radioactivity and filtration system using that of", KR-A-0001925, January 6 (2006).
- H. H. Park, "Process of radioactive liquid waste", KR-A-0077088, September 4 (2004).
- Y. S. Shin, S. J. Choi, Y. J. Park, and Marbine, "A method for preparing absorbents for treatment radioactive wastewater and a method for treating radioactive wastewater using them", KR-A-0113191, October 21 (2010).
- H. L. Lee, J. S. Park, I. H. Kwon, and J. K. Seo, "Treatment Method for radioactive contaminated water and treatment device", KR-A-0042067, April 7 (2014).
- A. T. Christopher, E. M. Wayne, and M. J. Mitchell, "Surface functional groups on acid-activated nutshell carbons", Carbon N. Y., 37, 1207 (1999). https://doi.org/10.1016/S0008-6223(98)00315-7
- C. P. Huang, H. W. Wang, and P. C. Chiu, "Nitrate reduction by metallic iron", Water Res., 32, 2257 (1998). https://doi.org/10.1016/S0043-1354(97)00464-8
- K. W. Lee, J. K. Moon, B. Y. Min, and K. S. Yoon, "Portable radioactive waste treatment equipment", KR-A-0047424, April 22 (2014).
- D. C. Jang and C. S. Ahn, "Method for preconditioning waste liquid and centrifugal separator used in the method", KR-A-0139781, December 8 (2014).
- Hitachi, Ltd., "Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus", JP Patent 25,156,130, August 15 (2013).
- Hitachi, Ltd., "Treatment apparatus and treatment method of decontamination waste liquid", JP Patent 25,186,025, September 19 (2013).
- J. H. Lee, "Method and system for laundary liquid radwaste treatment using reverse osmosis membrane and UV/peroxide photolysis oxidation processes", KR-A-0073685, December 5 (2000).
- S. C. Park and H. Y. Yang, "Combined CDI and EDI system for liquid radioactive waste treatment", KR-A-0069878, June 24 (2015).
- E. D. Hwang, K. W. Lee, K. H. Choo, S. J. Choi, S. H. Kim, and C. H. Lee, "Effect of precipitation and complexation on nanofiltration of strontium containing nuclear wastewater", Desalination, 147, 289 (2002). https://doi.org/10.1016/S0011-9164(02)00554-4
- K. K. Mihama, "Radioactive contamination water processing system, barge type radioactive contamination water processing facility, radioactive contamination water processing method, and on-barge radioactive contamination water processing method", JP Patent 24,225,755, November 15 (2012).
- Power reactor & nuclear fuel Dev. Corp. Fuji Elec. CO. LTD., "Method for processing radioactive waste liquid", JP Patent 04,274,709, October 14 (1994).
- Corp. Taiheiyo Cement, "Contaminated water processing method and processing unit", JP Patent 27,090,282, May 11 (2015).
- Co. Ltd. Kobelco eco-solution, "Water treatment method and water treatment facility", JP Patent 25,096,697, May 20 (2013).
- Co. Ltd. Toshiba, "Radioactive waste liquid processing device", JP Patent 10,062,595, March 6 (1998).
- Nippon Atom. Ind. Group Co. Ltd., "Treatment of chemical decontamination waste liquid", JP Patent 01,196,599, August 8 (1989).
- Corp. Organo, "Method and device for treating radioactive substance-containing effluent", JP Patent 20,064,703, March 21 (2008).
- H. Y. Zhu, Y. Lan, and X. P. Gao, "Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions", J. Am. Chem. Soc., 127, 6730 (2005). https://doi.org/10.1021/ja044689+
- I. H. Hwang and Y. H. Hong, "Method and apparatus for disposing radioactive waste water", KR-B-0085412, August 3 (2012).