DOI QR코드

DOI QR Code

How to Remove Radioactive Ions in Radioactive Waste

방사성 폐수 내 방사성 이온 제거방법

  • Received : 2015.12.14
  • Accepted : 2015.12.28
  • Published : 2015.12.31

Abstract

This review article indicated accident examples in the past and discussed dangerousness according to these examples. In addition, the ways to remove radioactive ions in radioactive waste, they were divided broadly and enumerated experimental case. These were many results of the experiment and patents used various ways complexly, but domestic technology prowess lower than foreign technology prowess. Even in case of accidents that could happen afterwards, it is essential for growth and competitiveness of domestic technology. Through this article, it considered today's technology for removing radioactive ions and was trying to find out about the possibility of development.

본 총설논문에서는 과거 방사능누출 사고사례를 제시하고 그에 따른 위험성을 논하였다. 또한 방사성 폐액 내의 방사성 이온들을 제거하기 위한 방법을 대별하고 실증사례들을 열거하였다. 여러 가지 방법을 복합적으로 사용한 실험결과 및 특허가 많이 있지만, 국내기술이 해외기술에 비해 미미한 실정이다. 후에 일어날 수도 있는 사고에 대비해서라도 국내 기술력의 발전과 경쟁력은 꼭 필요하다. 본 논문을 통해 방사성 이온 제거에 대한 현재 기술상황을 고찰하고 발전가능성에 대해 알아보고자 하였다.

Keywords

References

  1. B. Y. Kornilovich, G. N. Pshinko, and L. N. Spasenova, "Influence of humic compounds on caesium-137 sorption by mineral components of soils", Radiochemistry, 42, 92 (2000).
  2. M. S. Hodges and C. E. Sanders, "Nuclear criticality accident safety, near misses and classification", Progress in Nuclear Energy, 76 88 (2014). https://doi.org/10.1016/j.pnucene.2014.05.018
  3. C. Mothersill and C. Seymour, "Implications for human and environmental health of low doses of ionising radiation", J. Environ. Radioact., 133, 5 (2014). https://doi.org/10.1016/j.jenvrad.2013.04.002
  4. A. A. Odintsov, A. D. Sazhenyuk, and V. A. Satsyuk, "Association of $^{90x}Sr$, $^{137}Cs$, $^{349,240}Pu$, $^{241}Am$, and $^{244}Cm$ with soil absorbing complex in soils typical of the vicinity of the Cherobyl NPP", Radiochem., 46, 95 (2005).
  5. A. V. Panov, R. M. Alexakhin, P. V. Prudnikov, A. A. Novikov, and A. A. Muzalevskaya, "Influence of protective activity on $^{137}Cs$ accumulation by farming plants from soil after Chernobyl accident", Eurasian soil science, 42, 445 (2009). https://doi.org/10.1134/S1064229309040127
  6. I. G. Teplyakov, G. N. Romanov, and D. A. Spirin, "Returning of lands in East-Ural radioactive trace to farming use", Radiat. Saf. Quest., 3, 33 (1997).
  7. M. V. Zubets, B. S. Prister, R. M. Alexakhin, I. M. Bogdevich, and V. A. Kashparov, "Urgent problems and tasks of scientific support of farming in radioactively contaminated zone of Chernobyl NPP", Agroecol. J., 1, 5 (2011).
  8. M. Chino, H. Nakayama, H. Nagai, H. Terada, G. Katata, and H. Yamazawa, "Preliminary estimation of release amounts of $^{131}I$ and $^{137}Cs$ accidentally discharged from the Fukushima Dai-ichi nuclear power plant into the atmosphere", J. Nucl. Sci. Technol., 48, 1129 (2011). https://doi.org/10.1080/18811248.2011.9711799
  9. S. Endo, S. Kimura, T. Takatsuji, K. Nanasawa, T. Imanaka, and K. Shizuma, "Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi nuclear power plant accident and associated estimated cumulative external dose estimation", J. Environ. Radioact., 111, 18 (2012). https://doi.org/10.1016/j.jenvrad.2011.11.006
  10. M. Hirano, T. Yonomoto, M. Ishigaki, N. Watanabe, Y. Maruyama, Y. Sibamoto, T. Watanabe, and K. Moriyama, "Insights from review and analysis of the Fukushima Dai-ichi accident", J. Nucl. Sci. Technol., 49, 1 (2012). https://doi.org/10.1080/18811248.2011.636538
  11. N. Kaneyasu, H. Ohashi, F. Suzuki, T. Okuda, and F. Ikemori, "Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident", Environ. Sci. Technol., 46, 5720 (2012). https://doi.org/10.1021/es204667h
  12. H. Kato, Y. Onda, and M. Teramage, "Depth distribution of $^{137}Cs$, $^{134}Cs$, and $^{131}I$ in soil profile after Fukushima Dai-ichi nuclear power plant accident", J. Environ. Radioact., 111, 59 (2012). https://doi.org/10.1016/j.jenvrad.2011.10.003
  13. H. Katsumi, "2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results", J. Environ. Radioact., 111, 13 (2012). https://doi.org/10.1016/j.jenvrad.2011.09.003
  14. M. Nakano and R. N. Yong, "Overview of rehabilitation schemes for farmlands contaminated with radioactive cesium released from Fukushima power plant", Eng. Geol., 155, 87 (2013). https://doi.org/10.1016/j.enggeo.2012.12.010
  15. N. Yamaguchi, S. Eguchi, H. Fujiwara, K. Hayashi, and H. Tsukada, "Radiocesium and radioiodine in soil particles agitated by agricultural particles: field observation after the Fukushima nuclear accident", Sci. Total Environ., 425, 128 (2012). https://doi.org/10.1016/j.scitotenv.2012.02.037
  16. C. S. Lee, "The current of ultrapure water system", Membr. J., 6, 127 (1996).
  17. J. Wang and Zh. Wan, "Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry", Progress in Nuclear Energy, 78, 47 (2015). https://doi.org/10.1016/j.pnucene.2014.08.003
  18. A. M. El-Kamash, "Evaluation of zeolite a for the sorptive removal of $Cs^+$ and $Sr^{2+}$ ions from aqueous using batch and fixed bed column operations", J. Hazard. Mater., 151, 432 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.009
  19. T. A. Todd and V. N. Romanovskiy, "A comparison of crystalline silicotitanate and ammonium molybdophosphate-polyacrylonitrile composite sorbent for the separation of cesium from acidic waste", Radiochem., 47, 398 (2005). https://doi.org/10.1007/s11137-005-0109-3
  20. A. Nilchi, R. Saberi, M. Moradi, H. Azizpour, and R. Zarghami, "Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution", Chem. Eng. J., 172, 572 (2011). https://doi.org/10.1016/j.cej.2011.06.011
  21. F. Sebesta and V. Stefura, "Composite ion exchanger with ammonium molybdophosphate and its properties", J. Radioanal. Nucl. Chem., 140, 15 (1990). https://doi.org/10.1007/BF02037360
  22. T. J. Tranter, R. S. Herbst, T. A. Todd, A. L. Olson, and H. B. Eldredge, "Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of $^{137}Cs$ from acidic nuclear waste solutions", Adv. Environ. Res., 6, 107 (2002). https://doi.org/10.1016/S1093-0191(00)00073-3
  23. T. A. Todd, N. R. Mann, T. J. Tranter, F. Sebesta, J. John, and A. Motl, "Cesium adsorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents", J. Radioanal. Nucl. Chem., 254, 47 (2002). https://doi.org/10.1023/A:1020881212323
  24. Y. Park, Y. C. Lee, W. S. Shin, and S. J. Choi, "Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN)", Chem. Eng. J., 162, 685 (2010). https://doi.org/10.1016/j.cej.2010.06.026
  25. Y. Park, W. S. Shin, and S. J. Choi, "Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): An efficient ion exchanger for cesium ion", Chem. Eng. J., 220, 204 (2013). https://doi.org/10.1016/j.cej.2013.01.027
  26. O. Kutowy, W. L. Thayer, J. Tigner, S. Sourirajan, and G. K. Dhawan, "Tubular cellulose acetate reverse osmosis membranes for treatment of oily wastewaters", Ind. Eng. Chem. Prod. Res. Dev., 20, 354 (1981). https://doi.org/10.1021/i300002a024
  27. D. J. Kim, W. M. Choi, and S. Y. Nam, "Research and development trend of pertraction process using membrane", Membr. J., 22, 381 (2012).
  28. I. Smiciklas, I. Dimovic, and M. Mitric, "Removal of $Co^{2+}$ from aqueous solutions by hydroxyapatite", Water Res., 40, 2267 (2006). https://doi.org/10.1016/j.watres.2006.04.031
  29. B. Come and N. A. Chapman, "Natural analogues in radioactive waste disposal", pp. 165-286, Graham & Trotman, Norwell (1987).
  30. V. K. Bityukov and P. A. Vadim, "Absorption coefficient of molten aluminum oxide in semitransparent spectral range", Appl. Phys. Res., 5, 51 (2013).
  31. H. Bach and N. Norbert, "The properties of optical glass", pp. 297-308, Springer, Berlin (1998).
  32. P. Xu, J. E. Drewes, D. Heil, and G. Wang, "Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology", Water Res., 42, 2605 (2008). https://doi.org/10.1016/j.watres.2008.01.011
  33. G. T. Lee, W. I. Cho, and B. W. Cho, "Characteristics of capacitive deionization process using carbon aerogel composite electrodes", J. Korean Electrochem. Soc., 2, 77 (2005).
  34. P. M. Biesheuvel and A. V. D. Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  35. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, "Electrosorptive desalination by carbon nanotubes and nanofibers electrodes and ion-exchange membranes", Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  36. Y. J. Kim, J. H. Kim, and J. H. Choi, "Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI)", J. Membrane Sci., 429, 52 (2013). https://doi.org/10.1016/j.memsci.2012.11.064
  37. J. Y. Lee, S. J. Seo, S. H. Yun, and S. H. Moon, "Preparation of ion exchanger electrodes for advanced membrane capacitive deionization (MCDI)", Water Res., 45, 5375 (2011). https://doi.org/10.1016/j.watres.2011.06.028
  38. N. S. Kwak, J. S. Koo, T. S. Hwang, and E. M. Choi, "Synthesis and electrical properties of NaSSMAA-MMA cation exchange membranes for membrane capacitive deionization (MCDI)", Desalination, 285, 138 (2012). https://doi.org/10.1016/j.desal.2011.09.046
  39. J. S. Kim, J. H. Jeong, and J. W. Rhim, "Performance study of membrane capacitive deionization process applied by perfluoropolymer and aminated poly(ether imide) ion exchange membranes", Membr. J., 25, 60 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.60
  40. W. S. Shin, Y. J. Park, C. R. Kim, and S. J. Choi, "Sorptive removal of radionuclides (cobalt, strontium and cesium) using AMP/IO-PAN composites", J. of Nucl. Fuel Cycle and Waste Technol., 11, 259 (2013). https://doi.org/10.7733/jnfcwt-k.2013.11.4.259
  41. J. G. Jacangelo, J.-M. laine, E. W. Cummings, A. Deutschmann, J. Mallevialle, and M. R. Wiesner, "Evaluation of ultrafiltration membrane pretreatment and nanofiltration of surface waters", pp. 900-916, AWWA Research foundation, Denver (1994).
  42. W. J. Conlon and S. A. Mcclellan, "Membrane softening: A treatment process comes of age", J. Am. Water Works Assoc., 81, 48 (1989).
  43. J. S. Taylor, D. M. Thompson, and J. K. Carswell, "Applying membrane processes to groundwater sources for trihalomethane precursor control", J. Am. Water Works Assoc. 79, 72 (1987). https://doi.org/10.1002/j.1551-8833.1987.tb02897.x
  44. S. F. march and D. Gordon, "New bifunctional cationic-exchange resins for nuclear waste treatment", React. Funct. Polym., 35, 75 (1997). https://doi.org/10.1016/S1381-5148(97)00051-5
  45. N. J. Bridger, C. P. Jones, and M. D. Neville, "Electrochemical ion exchange", J. Chem. Technol. Biotechnol., 50, 469 (1991).
  46. A. B. Bocarsly and S. Sinha, "Chemically derivatized nickel surface: Synthesis of a new class of stable electrode interfaces", J. Electroanal. Chem. Interfacial electrochem., 137, 157 (1982). https://doi.org/10.1016/0022-0728(82)85075-4
  47. T. D. Clarke and C. M. Wai, "Selective removal of cesium from acid solutions with immobilized copper ferrocyanide", Anal. Chem., 70, 3708 (1998). https://doi.org/10.1021/ac971138b
  48. K. M. Jei, "Preparation of PAN-zeolite 4A composite ion exchanger and its uptake behavior for Sr and Cs ions in acid solution", Korean J. Chem. Eng., 19, 838 (2002). https://doi.org/10.1007/BF02706978
  49. H. Strathmann, "Selective removal of heavy metal ions from aqueous solutions by diafiltration of macromolecular complexes", Sep. Sci. Technol., 15, 1135 (1980). https://doi.org/10.1080/01496398008076291
  50. J. S. Shin, "The method of layer isolation-absorption for removal of waste liquid on radioactivity and filtration system using that of", KR-A-0001925, January 6 (2006).
  51. H. H. Park, "Process of radioactive liquid waste", KR-A-0077088, September 4 (2004).
  52. Y. S. Shin, S. J. Choi, Y. J. Park, and Marbine, "A method for preparing absorbents for treatment radioactive wastewater and a method for treating radioactive wastewater using them", KR-A-0113191, October 21 (2010).
  53. H. L. Lee, J. S. Park, I. H. Kwon, and J. K. Seo, "Treatment Method for radioactive contaminated water and treatment device", KR-A-0042067, April 7 (2014).
  54. A. T. Christopher, E. M. Wayne, and M. J. Mitchell, "Surface functional groups on acid-activated nutshell carbons", Carbon N. Y., 37, 1207 (1999). https://doi.org/10.1016/S0008-6223(98)00315-7
  55. C. P. Huang, H. W. Wang, and P. C. Chiu, "Nitrate reduction by metallic iron", Water Res., 32, 2257 (1998). https://doi.org/10.1016/S0043-1354(97)00464-8
  56. K. W. Lee, J. K. Moon, B. Y. Min, and K. S. Yoon, "Portable radioactive waste treatment equipment", KR-A-0047424, April 22 (2014).
  57. D. C. Jang and C. S. Ahn, "Method for preconditioning waste liquid and centrifugal separator used in the method", KR-A-0139781, December 8 (2014).
  58. Hitachi, Ltd., "Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus", JP Patent 25,156,130, August 15 (2013).
  59. Hitachi, Ltd., "Treatment apparatus and treatment method of decontamination waste liquid", JP Patent 25,186,025, September 19 (2013).
  60. J. H. Lee, "Method and system for laundary liquid radwaste treatment using reverse osmosis membrane and UV/peroxide photolysis oxidation processes", KR-A-0073685, December 5 (2000).
  61. S. C. Park and H. Y. Yang, "Combined CDI and EDI system for liquid radioactive waste treatment", KR-A-0069878, June 24 (2015).
  62. E. D. Hwang, K. W. Lee, K. H. Choo, S. J. Choi, S. H. Kim, and C. H. Lee, "Effect of precipitation and complexation on nanofiltration of strontium containing nuclear wastewater", Desalination, 147, 289 (2002). https://doi.org/10.1016/S0011-9164(02)00554-4
  63. K. K. Mihama, "Radioactive contamination water processing system, barge type radioactive contamination water processing facility, radioactive contamination water processing method, and on-barge radioactive contamination water processing method", JP Patent 24,225,755, November 15 (2012).
  64. Power reactor & nuclear fuel Dev. Corp. Fuji Elec. CO. LTD., "Method for processing radioactive waste liquid", JP Patent 04,274,709, October 14 (1994).
  65. Corp. Taiheiyo Cement, "Contaminated water processing method and processing unit", JP Patent 27,090,282, May 11 (2015).
  66. Co. Ltd. Kobelco eco-solution, "Water treatment method and water treatment facility", JP Patent 25,096,697, May 20 (2013).
  67. Co. Ltd. Toshiba, "Radioactive waste liquid processing device", JP Patent 10,062,595, March 6 (1998).
  68. Nippon Atom. Ind. Group Co. Ltd., "Treatment of chemical decontamination waste liquid", JP Patent 01,196,599, August 8 (1989).
  69. Corp. Organo, "Method and device for treating radioactive substance-containing effluent", JP Patent 20,064,703, March 21 (2008).
  70. H. Y. Zhu, Y. Lan, and X. P. Gao, "Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions", J. Am. Chem. Soc., 127, 6730 (2005). https://doi.org/10.1021/ja044689+
  71. I. H. Hwang and Y. H. Hong, "Method and apparatus for disposing radioactive waste water", KR-B-0085412, August 3 (2012).